Back to Search
Start Over
Dynamic multifunctional devices enabled by ultrathin metal nanocoatings with optical/photothermal and morphological versatility
- Source :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Year :
- 2021
-
Abstract
- Significance Smart devices characterized by micro-/nanotopographies, such as cracks, wrinkles, folds, etc., have been fabricated for widespread application. Here, with the combination of multiscale hierarchical architecture, ultrathin metal nanocoatings with high optical/photothermal tunability and morphological versatility, and surface/interface engineering, a set of multifunctional devices with multistimuli responsiveness was fabricated. These devices can adapt to external stimuli with reversible and instantaneous responses in optical signals, which include strain-regulated light-scattering properties, photothermal-responsive wrinkled surface coupled with moisture-responsive structural color, and mechanically controllable light-shielding properties. The structural designs that rationally overlay micro-/nanostructured ultrathin nanocoatings with other elements are the key to realize this advanced system, which provides avenues for designing versatile, tunable, and adaptable multifunctional devices.<br />Inspired by the intriguing adaptivity of natural life, such as squids and flowers, we propose a series of dynamic and responsive multifunctional devices based on multiscale structural design, which contain metal nanocoating layers overlaid with other micro-/nanoscale soft or rigid layers. Since the optical/photothermal properties of a metal nanocoating are thickness dependent, metal nanocoatings with different thicknesses were chosen to integrate with other structural design elements to achieve dynamic multistimuli responses. The resultant devices demonstrate 1) strain-regulated cracked and/or wrinkled topography with tunable light-scattering properties, 2) moisture/photothermal-responsive structural color coupled with wrinkled surface, and 3) mechanically controllable light-shielding properties attributed to the strain-dependent crack width of the nanocoating. These devices can adapt external stimuli, such as mechanical strain, moisture, light, and/or heat, into corresponding changes of optical signals, such as transparency, reflectance, and/or coloration. Therefore, these devices can be applied as multistimuli-responsive encryption devices, smart windows, moisture/photothermal-responsive dynamic optics, and smartphone app–assisted pressure-mapping sensors. All the devices exhibit high reversibility and rapid responsiveness. Thus, this hybrid system containing ultrathin metal nanocoatings holds a unique design flexibility and adaptivity and is promising for developing next-generation multifunctional devices with widespread application.
Details
- ISSN :
- 10916490
- Volume :
- 119
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....2ad2d982c9f4910f2579576093af0822