Back to Search Start Over

The secreted glycolytic enzyme GPI/AMF stimulates glioblastoma cell migration and invasion in an autocrine fashion but can have anti-proliferative effects

Authors :
Katrin Lamszus
Keith L. Ligon
Annegret Kathagen-Buhmann
Manfred Westphal
Markus Glatzel
Cecile L. Maire
Mareike Holz
Alexander Schulte
Jakob Matschke
Jonathan Weller
Source :
Neuro-oncology. 20(12)
Publication Year :
2018

Abstract

Background Aerobic glycolysis confers several advantages to tumor cells, including shunting of metabolites into anabolic pathways. In glioblastoma cells, hypoxia induces a flux shift from the pentose phosphate pathway toward glycolysis and a switch from proliferation to migration. The mechanistic link between glycolysis and migration is poorly understood. Since glucose-6-phosphate isomerase (GPI) is identical to the secreted cytokine autocrine motility factor (AMF), we investigated whether GPI/AMF regulates glioblastoma cell invasion. Methods The expression and hypoxic regulation of GPI/AMF and its receptor AMFR were analyzed in glioblastoma tissue and cell lines. Functional effects were studied in vitro and in xenograft models. Results High GPI/AMF expression in glioblastomas was found to be associated with a worse patient prognosis, and levels were highest in hypoxic pseudopalisades. Hypoxia upregulated both GPI/AMF and AMFR expression as well as GPI/AMF secretion in vitro. GPI/AMF stimulated cell migration in an autocrine fashion, and GPI/AMF expression was upregulated in migratory cells but reduced in rapidly proliferating cells. Knockdown or inhibition of GPI/AMF reduced glioblastoma cell migration but in part stimulated proliferation. In a highly invasive orthotopic glioblastoma model, GPI/AMF knockdown reduced tumor cell invasion but did not prolong survival. In a highly proliferative model, knockdown tumors were even larger and more proliferative than controls; however, perivascular invasion, provoked by simultaneous bevacizumab treatment, was reduced. Conclusions GPI/AMF is a potent motogen for glioblastoma cells, explaining in part the association between glycolysis and migration. Targeting GPI/AMF is, however, problematic, since beneficial anti-invasive effects may be outweighed by unintended mitogenic effects. Key points 1.Increased glycolysis is linked with increased cell migration and invasion in glioblastoma cells. 2.The glycolysis enzyme GPI/AMF may serve as a target for antimetabolic and anti-invasive therapy. 3.Despite reducing tumor invasion, GPI/AMF targeting may have unwanted growth stimulatory effects.

Details

ISSN :
15235866
Volume :
20
Issue :
12
Database :
OpenAIRE
Journal :
Neuro-oncology
Accession number :
edsair.doi.dedup.....2b19db0a80a3d23a8839a49cd95df5d0