Back to Search
Start Over
Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport
- Source :
- Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2004, 101, pp.8215-8220, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2004, 1017, pp.8215-8220, HAL, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2004, 101 (21), pp.8215-20. ⟨10.1073/pnas.0400081101⟩
- Publication Year :
- 2004
- Publisher :
- HAL CCSD, 2004.
-
Abstract
- The acid- and volume-sensitive TASK2 K + channel is strongly expressed in renal proximal tubules and papillary collecting ducts. This study was aimed at investigating the role of TASK2 in renal bicarbonate reabsorption by using the task2 –/– mouse as a model. After backcross to C57BL6, task2 –/– mice showed an increased perinatal mortality and, in adulthood, a reduced body weight and arterial blood pressure. Patch-clamp experiments on proximal tubular cells indicated that TASK2 was activated during \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} transport. In control inulin clearance measurements, task2 –/– mice showed normal NaCl and water excretion. During i.v. NaHCO 3 perfusion, however, renal Na + and water reabsorption capacity was reduced in –/– animals. In conscious task2 –/– mice, blood pH, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} concentration, and systemic base excess were reduced but urinary pH and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} were increased. These data suggest that task2 –/– mice exhibit metabolic acidosis caused by renal loss of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} . Both in vitro and in vivo results demonstrate the specific coupling of TASK2 activity to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} transport through external alkalinization. The consequences of the task2 gene inactivation in mice are reminiscent of the clinical manifestations seen in human proximal renal tubular acidosis syndrome.
- Subjects :
- Male
Potassium Channels
MESH: Acidosis, Renal Tubular
Urine
Kidney
MESH: Mice, Knockout
MESH: Urine
Mice
0302 clinical medicine
MESH: Bicarbonates
MESH: Sodium
MESH: Animals
Cells, Cultured
Mice, Knockout
0303 health sciences
Multidisciplinary
Reabsorption
MESH: Potassium Channels, Tandem Pore Domain
Acidosis, Renal Tubular
MESH: Potassium Channels
Biological Sciences
medicine.anatomical_structure
Perfusion
Proximal renal tubular acidosis
MESH: Cells, Cultured
medicine.medical_specialty
Consciousness
Urinary system
MESH: Biological Transport
Biology
Models, Biological
03 medical and health sciences
Potassium Channels, Tandem Pore Domain
MESH: Consciousness
Internal medicine
medicine
[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]
Animals
MESH: Mice
030304 developmental biology
Sodium
MESH: Models, Biological
Bicarbonate transport
Biological Transport
Metabolic acidosis
MESH: Kidney
medicine.disease
MESH: Male
Bicarbonates
Endocrinology
MESH: Gene Deletion
Base excess
Gene Deletion
030217 neurology & neurosurgery
Subjects
Details
- Language :
- English
- ISSN :
- 00278424 and 10916490
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2004, 101, pp.8215-8220, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2004, 1017, pp.8215-8220, HAL, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2004, 101 (21), pp.8215-20. ⟨10.1073/pnas.0400081101⟩
- Accession number :
- edsair.doi.dedup.....2b3f5f688588c5b1906c24f0cc16b31f
- Full Text :
- https://doi.org/10.1073/pnas.0400081101⟩