Back to Search Start Over

Spectral–Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach

Authors :
Jesús Angulo
Jon Atli Benediktsson
Yuliya Tarabalka
K. Bernard
Jocelyn Chanussot
University of Iceland [Reykjavik]
NASA Goddard Space Flight Center (GSFC)
Models of spatio-temporal structure for high-resolution image processing (AYIN)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de Morphologie Mathématique (CMM)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
GIPSA - Signal Images Physique (GIPSA-SIGMAPHY)
Département Images et Signal (GIPSA-DIS)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Source :
IEEE Transactions on Image Processing, IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2012, 21 (4), pp.2008-2021. ⟨10.1109/TIP.2011.2175741⟩, IEEE Transactions on Image Processing, 2012, 21 (4), pp.2008-2021. ⟨10.1109/TIP.2011.2175741⟩
Publication Year :
2012
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2012.

Abstract

International audience; In this paper, a new method for supervised hyperspectral data classification is proposed. In particular, the notion of stochastic Minimum Spanning Forest (MSF) is introduced. For a given hyperspectral image, a pixelwise classification is first performed. From this classification map, M marker maps are generated by randomly selecting pixels and labeling them as markers for the construction of Minimum Spanning Forests. The next step consists in building an MSF from each of the M marker maps. Finally, all the M realizations are aggregated with a maximum vote decision rule, in order to build the final classification map. The proposed method is tested on three different data sets of hyperspectral airborne images with different resolutions and contexts. The influence of the number of markers and of the number of realizations M on the results are investigated in experiments. The performance of the proposed method is compared to several classification techniques (both pixelwise and spectral-spatial) using standard quantitative criteria and visual qualitative evaluation.

Details

ISSN :
19410042 and 10577149
Volume :
21
Database :
OpenAIRE
Journal :
IEEE Transactions on Image Processing
Accession number :
edsair.doi.dedup.....2b44e4cd6df9535f0d8cb65c86817d3f
Full Text :
https://doi.org/10.1109/tip.2011.2175741