Back to Search Start Over

Global solution of non-convex quadratically constrained quadratic programs

Authors :
Amélie Lambert
Sourour Elloumi
Optimisation et commande ( OC )
Unité de Mathématiques Appliquées ( UMA )
École Nationale Supérieure de Techniques Avancées ( Univ. Paris-Saclay, ENSTA ParisTech ) -École Nationale Supérieure de Techniques Avancées ( Univ. Paris-Saclay, ENSTA ParisTech )
Centre d'Etude et De Recherche en Informatique du Cnam ( CEDRIC )
Conservatoire National des Arts et Métiers [CNAM] ( CNAM )
Optimisation et commande (OC)
Unité de Mathématiques Appliquées (UMA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
CEDRIC. Optimisation Combinatoire (CEDRIC - OC)
Centre d'études et de recherche en informatique et communications (CEDRIC)
Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
Source :
Optimization Methods and Software, Optimization Methods and Software, Taylor & Francis, 2017, pp.1-17. 〈10.1080/10556788.2017.1350675〉, Optimization Methods and Software, Taylor & Francis, 2019, 34 (1), pp.98-114. ⟨10.1080/10556788.2017.1350675⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; The class of mixed-integer quadratically constrained quadratic programs (QCQP) consists of minimizing a quadratic function under quadratic constraints where the variables could be integer or continuous. On a previous paper we introduced a method called MIQCR for solving QC-QPs with the following restriction : all quadratic sub-functions of purely continuous variables are already convex. In this paper, we propose an extension of MIQCR which applies to any QCQP. Let (P) be a QCQP. Our approach to solve (P) is first to build an equivalent mixed-integer quadratic problem (P *). This equivalent problem (P *) has a quadratic convex objective function, linear constraints, and additional variables y that are meant to satisfy the additional quadratic constraints y = xx T , where x are the initial variables of problem (P). We then propose to solve (P *) by a branch-and-bound algorithm based on the relaxation of the additional quadratic constraints and of the integrality constraints. This type of branching is known as spatial branch-and-bound. Computational experiences are carried out on a total of 325 instances. The results show that the solution time of most of the considered instances is improved by our method in comparison with the recent implementation of QuadProgBB, and with the solvers Cplex, Couenne, Scip, BARON and GloMIQO.

Details

Language :
English
ISSN :
10556788 and 10294937
Database :
OpenAIRE
Journal :
Optimization Methods and Software, Optimization Methods and Software, Taylor & Francis, 2017, pp.1-17. 〈10.1080/10556788.2017.1350675〉, Optimization Methods and Software, Taylor & Francis, 2019, 34 (1), pp.98-114. ⟨10.1080/10556788.2017.1350675⟩
Accession number :
edsair.doi.dedup.....2ba3db27e254954350b472e25b7861d4