Back to Search
Start Over
Frequency tuning behaviour of terahertz quantum cascade lasers revealed by a laser beating scheme
- Source :
- Optics express. 29(14)
- Publication Year :
- 2021
-
Abstract
- In the terahertz frequency range, the commercialized spectrometers, such as the Fourier transform infrared and time domain spectroscopies, show spectral resolutions between a hundred megahertz and a few gigahertz. Therefore, the high precision frequency tuning ability of terahertz lasers cannot be revealed by these traditional spectroscopic techniques. In this work, we demonstrate a laser beating experiment to investigate the frequency tuning characteristics of terahertz quantum cascade lasers (QCLs) induced by temperature or drive current. Two terahertz QCLs emitting around 4.2 THz with identical active regions and laser dimensions (150 µm wide and 6 mm long) are employed in the beating experiment. One laser is operated as a frequency comb and the other one is driven at a lower current to emit a single frequency. To measure the beating signal, the single mode laser is used as a fast detector (laser self-detection). The laser beating scheme allows the high precision measurement of the frequency tuning of the single mode terahertz QCL. The experimental results show that in the investigated temperature and current ranges, the frequency tuning coefficients of the terahertz QCL are 6.1 MHz/0.1 K (temperature tuning) and 2.7 MHz/mA (current tuning) that cannot be revealed by a traditional terahertz spectrometer. The laser beating technique shows potential abilities in high precision linewidth measurements of narrow absorption lines and multi-channel terahertz communications.
- Subjects :
- Materials science
Spectrometer
business.industry
Terahertz radiation
Infrared
Detector
Single-mode optical fiber
Physics::Optics
02 engineering and technology
021001 nanoscience & nanotechnology
Laser
01 natural sciences
Atomic and Molecular Physics, and Optics
law.invention
010309 optics
Frequency comb
Laser linewidth
Optics
law
0103 physical sciences
0210 nano-technology
business
Subjects
Details
- ISSN :
- 10944087
- Volume :
- 29
- Issue :
- 14
- Database :
- OpenAIRE
- Journal :
- Optics express
- Accession number :
- edsair.doi.dedup.....2c0c5a1348eb338ea9954aa42a55241b