Back to Search Start Over

Hypoelliptic heat kernel inequalities on the Heisenberg group

Authors :
Tai Melcher
Bruce K. Driver
Source :
Journal of Functional Analysis. 221(2):340-365
Publication Year :
2005
Publisher :
Elsevier BV, 2005.

Abstract

We study the existence of “Lp-type” gradient estimates for the heat kernel of the natural hypoelliptic “Laplacian” on the real three-dimensional Heisenberg Lie group. Using Malliavin calculus methods, we verify that these estimates hold in the case p>1. The gradient estimate for p=2 implies a corresponding Poincaré inequality for the heat kernel. The gradient estimate for p=1 is still open; if proved, this estimate would imply a logarithmic Sobolev inequality for the heat kernel.

Details

ISSN :
00221236
Volume :
221
Issue :
2
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....2c2de1082219cdd082f9c10e36a73bd9
Full Text :
https://doi.org/10.1016/j.jfa.2004.06.012