Back to Search
Start Over
Hypoelliptic heat kernel inequalities on the Heisenberg group
- Source :
- Journal of Functional Analysis. 221(2):340-365
- Publication Year :
- 2005
- Publisher :
- Elsevier BV, 2005.
-
Abstract
- We study the existence of “Lp-type” gradient estimates for the heat kernel of the natural hypoelliptic “Laplacian” on the real three-dimensional Heisenberg Lie group. Using Malliavin calculus methods, we verify that these estimates hold in the case p>1. The gradient estimate for p=2 implies a corresponding Poincaré inequality for the heat kernel. The gradient estimate for p=1 is still open; if proved, this estimate would imply a logarithmic Sobolev inequality for the heat kernel.
- Subjects :
- Discrete mathematics
Pure mathematics
Heat kernels
Inequality
media_common.quotation_subject
010102 general mathematics
Malliavin calculus
Lie group
Mathematics::Spectral Theory
01 natural sciences
Heisenberg group
010104 statistics & probability
Hypoelliptic operator
Hypoellipticity
0101 mathematics
Heat kernel
Analysis
Mathematics
media_common
Subjects
Details
- ISSN :
- 00221236
- Volume :
- 221
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Analysis
- Accession number :
- edsair.doi.dedup.....2c2de1082219cdd082f9c10e36a73bd9
- Full Text :
- https://doi.org/10.1016/j.jfa.2004.06.012