Back to Search Start Over

State estimation for a class of non-linear systems

Authors :
Benoît Schwaller
Birgitta Dresp-Langley
José Ragot
Denis Ensminger
Laboratoire de Génie de la Conception (LGeco)
Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Conception en structures (CS)
Laboratoire de Mécanique et Génie Civil (LMGC)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Centre de Recherche en Automatique de Nancy (CRAN)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Applied Mathematics and Computer Science, International Journal of Applied Mathematics and Computer Science, University of Zielona Góra 2013, 23 (2), pp.383-394. ⟨10.2478/amcs-2013-0029⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; We propose a new type of Proportional Integral (PI) state observer for a class of nonlinear systems in continuous time which ensures an asymptotic stable convergence of the state estimates. Approximations of non-linearity are not necessary to obtain such results, but the functions must be, at least locally, of the Lipschitz type. The obtained state variables are exact and robust against noise. Naslin's damping criterion permits synthesizing gains in an algebraically simple and efficient way. Both the speed and damping of the observer response are controlled in this way. Model simulations based on a Sprott strange attractor are discussed as an example.

Details

Language :
English
ISSN :
1641876X and 20838492
Database :
OpenAIRE
Journal :
International Journal of Applied Mathematics and Computer Science, International Journal of Applied Mathematics and Computer Science, University of Zielona Góra 2013, 23 (2), pp.383-394. ⟨10.2478/amcs-2013-0029⟩
Accession number :
edsair.doi.dedup.....2c40a0646c4d39ea9cb3a8949d3b0bc8
Full Text :
https://doi.org/10.2478/amcs-2013-0029⟩