Back to Search
Start Over
Symmetric semisimple modules of group algebras over finite fields and self-dual permutation codes
- Source :
- Journal of Algebra. 355:80-92
- Publication Year :
- 2012
- Publisher :
- Elsevier BV, 2012.
-
Abstract
- A module of a finite group over a finite field with a symmetric non-degenerate bilinear form which is invariant by the group action is called a symmetric module. In this paper, a characterization of indecomposable orthogonal decompositions of symmetric semisimple modules and a criterion for the hyperbolic symmetric modules are obtained, and some applications to the self-dual permutation codes are shown.
- Subjects :
- Discrete mathematics
Algebra and Number Theory
Triple system
Bilinear metric
Stanley symmetric function
Hyperbolic module
Complete homogeneous symmetric polynomial
Symmetric module
Cyclic permutation
Representation theory of the symmetric group
Symmetric group
Permutation code
Elementary symmetric polynomial
Ring of symmetric functions
Mathematics
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 355
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....2c7cbfc38d519482e4cb1f977d7bee6d
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2012.01.014