Back to Search Start Over

Promising prebiotic candidate established by evaluation of lactitol, lactulose, raffinose, and oligofructose for maintenance of a Lactobacillus-dominated vaginal microbiota

Authors :
Gregor Reid
Stephanie L. Collins
Mark W. Sumarah
Shannon Seney
Amy McMillan
Remco Kort
Charlotte van der Veer
Molecular Cell Physiology
AIMMS
AII - Infectious diseases
Graduate School
APH - Global Health
Source :
Applied and Environmental Microbiology, 84(5):e02200-17, 1-15. American Society for Microbiology, Collins, S L, McMillan, A, Seney, S, van der Veer, C, Kort, R, Sumarah, M W & Reid, G 2018, ' Promising prebiotic candidate established by evaluation of lactitol, lactulose, raffinose, and oligofructose for maintenance of a Lactobacillus-dominated vaginal microbiota ', Applied and Environmental Microbiology, vol. 84, no. 5, e02200-17, pp. 1-15 . https://doi.org/10.1128/AEM.02200-17, Microbiology & Immunology Publications, Applied and Environmental Microbiology, Applied and environmental microbiology, 84(5):e02200-17. American Society for Microbiology, Applied and Environmental Microbiology, 5, 84
Publication Year :
2018

Abstract

Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus , Lactobacillus vaginalis , Lactobacillus gasseri , Lactobacillus johnsonii , Lactobacillus jensenii , and Lactobacillus iners , in addition to BV-associated organisms and Candida albicans , were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus , and importantly, not to stimulate BV organisms or C. albicans . Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented by beneficial bacteria such as Lactobacillus spp.—can modulate the vaginal microbiota. We also report use of a novel in vitro polymicrobial model to study the impact of prebiotics on the vaginal microbiota. The identification of prebiotic lactulose as enhancing Lactobacillus growth but not that of BV organisms or Candida albicans has direct application for retention of homeostasis and prevention of vaginal dysbiosis and infection.

Details

Language :
English
ISSN :
00992240
Database :
OpenAIRE
Journal :
Applied and Environmental Microbiology, 84(5):e02200-17, 1-15. American Society for Microbiology, Collins, S L, McMillan, A, Seney, S, van der Veer, C, Kort, R, Sumarah, M W & Reid, G 2018, ' Promising prebiotic candidate established by evaluation of lactitol, lactulose, raffinose, and oligofructose for maintenance of a Lactobacillus-dominated vaginal microbiota ', Applied and Environmental Microbiology, vol. 84, no. 5, e02200-17, pp. 1-15 . https://doi.org/10.1128/AEM.02200-17, Microbiology & Immunology Publications, Applied and Environmental Microbiology, Applied and environmental microbiology, 84(5):e02200-17. American Society for Microbiology, Applied and Environmental Microbiology, 5, 84
Accession number :
edsair.doi.dedup.....2cbc522d215cfa9a89e49f9cdac0c491
Full Text :
https://doi.org/10.1128/AEM.02200-17