Back to Search Start Over

Nonpyramidal neurons in the primate basolateral amygdala: A Golgi study in the baboon ( Papio cynocephalus ) and long‐tailed macaque ( Macaca fascicularis )

Authors :
Alexander J. McDonald
James R. Augustine
Source :
J Comp Neurol
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Nonpyramidal GABAergic interneurons in the basolateral nuclear complex (BNC) of the amygdala are critical for the regulation of emotion. Remarkably, there have been no Golgi studies of these neurons in nonhuman primates. Therefore, in the present study we investigated the morphology of nonpyramidal neurons (NPNs) in the BNC of the baboon and monkey using the Golgi technique. NPNs were scattered throughout all nuclei of the BNC and had aspiny or spine-sparse dendrites. NPNs were morphologically heterogeneous and could be divided into small, medium, large, and giant types based on the size of their somata. NPNs could be further divided on the basis of their somatodendritic morphology into four types: multipolar, bitufted, bipolar, and irregular. NPN axons, when stained, formed dense local arborizations that overlapped their dendritic fields to varying extents. These axons always exhibited varying numbers of varicosities representing axon terminals. Three specialized NPN subtypes were recognized because of their unique anatomical features: axo-axonic cells, neurogliaform cells, and giant cells. The axons of axo-axonic cells formed “axonal cartridges,” with clustered varicosities that contacted the axon initial segments of pyramidal neurons (PNs). Neurogliaform cells had small somata and numerous short dendrites that formed a dense dendritic arborization; they also exhibited a very dense axonal arborization that overlapped the dendritic field. Giant cells had very large irregular somata and long, thick dendrites; their distal dendrites often branched extensively and had long appendages. In general, the NPNs of the baboon and monkey BNC, including the specialized subtypes, were similar to those of rodents.

Details

ISSN :
10969861 and 00219967
Volume :
528
Database :
OpenAIRE
Journal :
Journal of Comparative Neurology
Accession number :
edsair.doi.dedup.....2cd37d72d906269020e87f90f8a0f6eb