Back to Search Start Over

BRCA1-BARD1 Complexes Are Required for p53Ser-15 Phosphorylation and a G1/S Arrest following Ionizing Radiation-induced DNA Damage

Authors :
Karen Hobson
Megan Fabbro
Andrew J. Deans
Kienan I. Savage
Simon N. Powell
Kum Kum Khanna
Grant A. McArthur
Source :
Journal of Biological Chemistry. 279:31251-31258
Publication Year :
2004
Publisher :
Elsevier BV, 2004.

Abstract

BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 and BARD1 to demonstrate that the BRCA1-BARD1 complex is required for ATM/ATR (ataxia-telangiectasia-mutated/ATM and Rad3-related)-mediated phosphorylation of p53(Ser-15) following IR- and UV radiation-induced DNA damage. In contrast, phosphorylation of a number of other ATM/ATR targets including H2AX, Chk2, Chk1, and c-jun does not depend on the presence of BRCA1-BARD1 complexes. Moreover, prior ATM/ATR-dependent phosphorylation of BRCA1 at Ser-1423 or Ser-1524 regulates the ability of ATM/ATR to phosphorylate p53(Ser-15) efficiently. Phosphorylation of p53(Ser-15) is necessary for an IR-induced G(1)/S arrest via transcriptional induction of the cyclin-dependent kinase inhibitor p21. Consistent with these data, repressing p53(Ser-15) phosphorylation by BRCA1-BARD1 depletion compromises p21 induction and the G(1)/S checkpoint arrest in response to IR but not UV radia-tion. These findings suggest that BRCA1-BARD1 complexes act as an adaptor to mediate ATM/ATR-directed phosphorylation of p53, influencing G(1)/S cell cycle progression after DNA damage.

Details

ISSN :
00219258
Volume :
279
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....2cd6690fbc7f35209a355b958d1a7491
Full Text :
https://doi.org/10.1074/jbc.m405372200