Back to Search
Start Over
Solution of the Fractional Form of Unsteady Squeezing Flow through Porous Medium
- Source :
- Mathematical Problems in Engineering, Vol 2017 (2017)
- Publication Year :
- 2017
- Publisher :
- Hindawi Limited, 2017.
-
Abstract
- We propose two friendly analytical techniques called Adomian decomposition and Picard methods to analyze an unsteady axisymmetric flow of nonconducting, Newtonian fluid. This fluid is assumed to be squeezed between two circular plates passing through porous medium channel with slip and no-slip boundary conditions. A single fractional order nonlinear ordinary differential equation is obtained by means of similarity transformation with the help of the fractional calculus definitions. The resulting fractional boundary value problems are solved by the proposed methods. Convergence of the two methods’ solutions is confirmed by obtaining various approximate solutions and various absolute residuals for different values of the fractional order. Comparison of the results of the two methods for different values of the fractional order confirms that the proposed methods are in a well agreement and therefore they can be used in a simple manner for solving this kind of problems. Finally, graphical study for the longitudinal and normal velocity profiles is obtained for various values of some dimensionless parameters and fractional orders.
- Subjects :
- Article Subject
lcsh:Mathematics
General Mathematics
Mathematical analysis
General Engineering
02 engineering and technology
Slip (materials science)
lcsh:QA1-939
Matrix similarity
Fractional calculus
Physics::Fluid Dynamics
020303 mechanical engineering & transports
0203 mechanical engineering
lcsh:TA1-2040
0202 electrical engineering, electronic engineering, information engineering
Newtonian fluid
020201 artificial intelligence & image processing
Boundary value problem
lcsh:Engineering (General). Civil engineering (General)
Normal velocity
Porous medium
Mathematics
Dimensionless quantity
Subjects
Details
- ISSN :
- 15635147 and 1024123X
- Volume :
- 2017
- Database :
- OpenAIRE
- Journal :
- Mathematical Problems in Engineering
- Accession number :
- edsair.doi.dedup.....2cff18324811be482f85beea43a54eca
- Full Text :
- https://doi.org/10.1155/2017/1421862