Back to Search Start Over

Probabilistic Modeling and Inference for Sequential Space-Varying Blur Identification

Authors :
Victor Elvira
Yunshi Huang
Emilie Chouzenoux
Laboratoire d'Informatique Gaspard-Monge (LIGM)
École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
School of Mathematics - University of Edinburgh
University of Edinburgh
ANR-17-CE40-0004,MajIC,Algorithmes de Majoration-Minimisation pour le traitement d'images(2017)
ANR-17-CE40-0031,PISCES,Méthodes d'échantillonnage d'importance adaptatives pour l'inférence Bayésienne dans les systèmes complexes(2017)
Source :
IEEE Transactions on Computational Imaging, IEEE Transactions on Computational Imaging, IEEE, 2021, 7, pp.531-546, Huang, Y, Chouzenoux, E & Elvira, V 2021, ' Probabilistic modeling and inference for sequential space-varying blur identification ', IEEE Transactions on Computational Imaging, vol. 7, pp. 531-546 . https://doi.org/10.1109/TCI.2021.3081059, IEEE Transactions on Computational Imaging, 2021, 7, pp.531-546. ⟨10.1109/TCI.2021.3081059⟩
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

International audience; The identification of parameters of spatially variant blurs given a clean image and its blurry noisy version is a challenging inverse problem of interest in many application fields, such as biological microscopy and astronomical imaging. In this paper, we consider a parametric model of the blur and introduce an 1D state-space model to describe the statistical dependence among the neighboring kernels. We apply a Bayesian approach to estimate the posterior distribution of the kernel parameters given the available data. Since this posterior is intractable for most realistic models, we propose to approximate it through a sequential Monte Carlo approach by processing all data in a sequential and efficient manner. Additionally, we propose a new sampling method to alleviate the particle degeneracy problem, which is present in approximate Bayesian filtering, particularly in challenging concentrated posterior distributions. The considered method allows us to process sequentially image patches at a reasonable computational and memory costs. Moreover, the probabilistic approach we adopt in this paper provides uncertainty quantification which is useful for image restoration. The practical experimental results illustrate the improved estimation performance of our novel approach, demonstrating also the benefits of exploiting the spatial structure the parametric blurs in the considered models.

Details

ISSN :
23340118, 25730436, and 23339403
Volume :
7
Database :
OpenAIRE
Journal :
IEEE Transactions on Computational Imaging
Accession number :
edsair.doi.dedup.....2d2b42e3b470a2b2946de68ac58cea7b
Full Text :
https://doi.org/10.1109/tci.2021.3081059