Back to Search Start Over

How a well-adapting immune system remembers

Authors :
Aleksandra M. Walczak
Vijay Balasubramanian
Thierry Mora
Andreas Mayer
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
City University of New York [New York] (CUNY)
Physique Statistique et Inférence pour la Biologie
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris)
Source :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2019, 116 (18), pp.8815-8823. ⟨10.1073/pnas.1812810116⟩
Publication Year :
2018
Publisher :
Cold Spring Harbor Laboratory, 2018.

Abstract

Significance The adaptive immune system is able to protect us from a large variety of pathogens, even ones it has not seen yet. Can predicting the future pathogen distribution help in protection? We find that a combination of probabilistic forecasting and occasional sampling of the current environment reduces infection costs—a scheme easily implemented by the memory repertoire. The proposed theoretical framework offers a modular recipe for updating the memory repertoire, which quantitatively predicts the strength of the immune response in flu-vaccination experiments, unlike other update schemes. It also links the observed early life dynamics of the memory pool to the sparseness properties of the pathogen distribution and competitive receptor dynamics for pathogens.<br />An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a midlife plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine-response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs, even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors.

Details

Language :
English
ISSN :
00278424 and 10916490
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2019, 116 (18), pp.8815-8823. ⟨10.1073/pnas.1812810116⟩
Accession number :
edsair.doi.dedup.....2d6f8915ccfa32f33f64ce7acf940eb9
Full Text :
https://doi.org/10.1101/347856