Back to Search Start Over

Water-use efficiency and transpiration across European forests during the Anthropocene

Authors :
M. Kalela-Brundin
Nicolas Viovy
Benjamin Poulter
Emilia Gutiérrez
Katja T. Rinne
H. Marah
Markus Leuenberger
Kerstin Treydte
Z. Bednarz
Mark R. Lomas
Emmi Hilasvuori
Niklaus E. Zimmermann
Philippe Ciais
John S. Waterhouse
Gerhard H. Schleser
David Frank
Stephen Sitch
Elżbieta Szychowska‐Kra̧piec
Laia Andreu-Hayles
Samuel Levis
Anna Pazdur
Michael Grabner
Tatjana Boettger
Gerhard Helle
Carmela Miriam D’Alessandro
Monique Pierre
Högne Jungner
V. R. Switsur
M. Filot
Matthias Saurer
Eloni Sonninen
Pierre Friedlingstein
Marek Krapiec
M. Szczepanek
C. E. Reynolds-Henne
Octavi Planells
Valérie Daux
Frank Berninger
Chris Huntingford
Luigi Todaro
Anders Ahlström
Valérie Masson-Delmotte
Jan Esper
Sławomira Pawełczyk
Marika Haupt
Neil J. Loader
Martin Weigl
Michel Stievenard
Antonio Saracino
R. Pukiene
Montana State University (MSU)
Paul Scherrer Institute (PSI)
Swiss Federal Research Institute WSL
SWISS FEDERAL RESEARCH INSTITUTE WSL
Centre for Ecology and Hydrology (CEH)
Natural Environment Research Council (NERC)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
ICOS-ATC (ICOS-ATC)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
National Center for Atmospheric Research [Boulder] (NCAR)
Centre for Terrestrial Carbon Dynamics: National Centre for Earth Observation (CTCD)
University of Sheffield [Sheffield]
College of Life and Environmental Sciences [Exeter]
University of Exeter
Modélisation des Surfaces et Interfaces Continentales (MOSAIC)
University of Helsinki
Géochrononologie Traceurs Archéométrie (GEOTRAC)
Glaces et Continents, Climats et Isotopes Stables (GLACCIOS)
Polish Geological Institute
Climate and Environmental Physics [Bern] (CEP)
Physikalisches Institut [Bern]
Universität Bern [Bern]-Universität Bern [Bern]
CNESTEN
cnesten
inconnu
Inconnu
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Helsingin yliopisto = Helsingfors universitet = University of Helsinki
Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE)
Frank, D. C.
Poulter, B.
Saurer, M.
Esper, J.
C., Huntingford
Helle, G.
Treydte, K. S.
Zimmermann, N. E.
G. H., Schleser
A., Ahlström
P., Ciai
P., Friedlingstein
S., Levi
M., Loma
S., Sitch
N., Viovy
Andreu Hayles, L.
Bednarz, Z.
Berninger, F.
Boettger, T.
D’Alessandro, C. M.
Daux, V.
Filot, M.
Grabner, M.
Gutierrez, E.
Haupt, M.
Hilasvuori, E.
Jungner, H.
Kalela Brundin, M.
Krapiec, M.
Leuenberger, M.
Loader, N. J.
Marah, H.
Masson Delmotte, V.
Pazdur, A.
Pawelczyk, S.
Pierre, M.
Planells, O.
Pukiene, R.
Reynolds Henne, C. E.
Rinne, K. T.
Saracino, Antonio
Sonninen, E.
Stievenard, M.
Switsur, V. R.
Szczepanek, M.
Szychowska Krapiec, E.
Todaro, L.
Waterhouse, J. S.
Weigl, M.
Source :
Nature Climate Change, Nature Climate Change, Nature Publishing Group, 2015, 5 (6), pp.579-583. ⟨10.1038/nclimate2614⟩, ResearcherID, Nature Climate Change, 2015, 5 (6), pp.579-583. ⟨10.1038/nclimate2614⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ∼0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

Details

Language :
English
ISSN :
1758678X and 17586798
Database :
OpenAIRE
Journal :
Nature Climate Change, Nature Climate Change, Nature Publishing Group, 2015, 5 (6), pp.579-583. ⟨10.1038/nclimate2614⟩, ResearcherID, Nature Climate Change, 2015, 5 (6), pp.579-583. ⟨10.1038/nclimate2614⟩
Accession number :
edsair.doi.dedup.....2d77b1804f6a261ea842d5cadde3e9e2