Back to Search
Start Over
Some properties of multisymplectic manifolds
- Source :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Springer Proceedings in Physics ISBN: 9783030247478
- Publication Year :
- 2019
- Publisher :
- Springer, 2019.
-
Abstract
- This lecture is devoted to review some of the main properties of multisymplectic geometry. In particular, after reminding the standard definition of multisymplectic manifold, we introduce its characteristic submanifolds, the canonical models, and other relevant kinds of multisymplectic manifolds, such as those where the existence of Darboux-type coordinates is assured. The Hamiltonian structures that can be defined in these manifolds are also studied, as well as other important properties, such as their invariant forms and the characterization by automorphisms.
- Subjects :
- Physics::Computational Physics
Automatic control
Pure mathematics
Hamiltonian structures
Multi- vector fields
Multisymplectic forms
Bundles of forms
Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC]
Characterization (mathematics)
Automorphism
Manifold
Invariant forms
Control automàtic
Standard definition
Canonical model
70 Mechanics of particles and systems::70Q05 Control of mechanical systems [Classificació AMS]
Mathematics::Mathematical Physics
Mathematics::Differential Geometry
Invariant (mathematics)
Mathematics::Symplectic Geometry
Hamiltonian (control theory)
Mathematics
Subjects
Details
- Language :
- English
- ISBN :
- 978-3-030-24747-8
- ISBNs :
- 9783030247478
- Database :
- OpenAIRE
- Journal :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Springer Proceedings in Physics ISBN: 9783030247478
- Accession number :
- edsair.doi.dedup.....2daa8ae74952b364b74f223e37623d94
- Full Text :
- https://doi.org/10.1007/978-3-030-24748-5_18