Back to Search Start Over

Revealing the interlevel dependence structure of categorical inputs in numerical environmental simulations with kernel model selection

Authors :
Jeremy Rohmer
Olivier Roustant
Sophie Lecacheux
Jean-Charles Manceau
Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Environmental Modelling and Software, Environmental Modelling and Software, 2022, 151, pp.105380. ⟨10.1016/j.envsoft.2022.105380⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Model uncertainties are generally integrated in environmental long-running numerical simulators via a categorical variable. By focusing on Gaussian process (GP) models, we show how different categorical kernel models (exchangeable, ordinal, group, etc.) can bring valuable insights into the correlation of the simulator output values computed for different levels of the categorical variable, i.e., the interlevel dependence structure. Supported by two real case applications (cyclone-induced waves and reservoir modeling), we have proposed a cross-validation approach to select the most appropriate kernel by finding a trade-off between predictability, explainability, and stability of the covariance coefficients. This approach can be used effectively to support some physical assumptions regarding the categorical variable. Through comparison to tree-based techniques, we show that GP models can be considered a satisfactory compromise when only a few model runs (∼100) are available by presenting a high predictability and a concise and graphical way to map the interlevel dependence structure.

Details

Language :
English
ISSN :
13648152
Database :
OpenAIRE
Journal :
Environmental Modelling and Software, Environmental Modelling and Software, 2022, 151, pp.105380. ⟨10.1016/j.envsoft.2022.105380⟩
Accession number :
edsair.doi.dedup.....2dab38bf1e22ceb390604ce7674933fd
Full Text :
https://doi.org/10.1016/j.envsoft.2022.105380⟩