Back to Search Start Over

PenDA, a rank-based method for personalized differential analysis: Application to lung cancer

Authors :
Elisabeth Brambilla
Clémentine Decamps
Daniel Jost
Magali Richard
Florent Chuffart
Sophie Rousseaux
Saadi Khochbin
Biologie Computationnelle et Mathématique (TIMC-IMAG-BCM)
Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications Grenoble - UMR 5525 (TIMC-IMAG)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB)
Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
The research leading to these results was supported by ITMO Cancer (Plan Cancer 2014-2019, Biologie des Systèmes n˚BIO2015-08) [EB, SK, DJ] and University Grenoble-Alpes via the Grenoble Alpes Data Institute [MR] and the SYMER program [SK, DJ] (which are funded by the French National Research Agency under the 'Investissements d’Avenir' program ANR-15-IDEX-02). SK acknowledges additional funding from Plan Cancer ASC16079CSA, Pitcher, LIFE program of University Grenoble Alpes (ANR-15-IDEX-02), Fondation ARC 'Canc’air' (RAC16042CLA) and project PGA1 RF20190208471.
Bodescot, Myriam
Biologie Computationnelle et Modélisation (TIMC-BCM )
Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC )
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Source :
PLoS Computational Biology, PLoS Computational Biology, 2020, 16 (5), pp.e1007869. ⟨10.1371/journal.pcbi.1007869⟩, PLoS Computational Biology, Vol 16, Iss 5, p e1007869 (2020), PLoS Computational Biology, Public Library of Science, 2020, 16 (5), pp.e1007869. ⟨10.1371/journal.pcbi.1007869⟩
Publication Year :
2020

Abstract

The hopes of precision medicine rely on our capacity to measure various high-throughput genomic information of a patient and to integrate them for personalized diagnosis and adapted treatment. Reaching these ambitious objectives will require the development of efficient tools for the detection of molecular defects at the individual level. Here, we propose a novel method, PenDA, to perform Personalized Differential Analysis at the scale of a single sample. PenDA is based on the local ordering of gene expressions within individual cases and infers the deregulation status of genes in a sample of interest compared to a reference dataset. Based on realistic simulations of RNA-seq data of tumors, we showed that PenDA outcompetes existing approaches with very high specificity and sensitivity and is robust to normalization effects. Applying the method to lung cancer cohorts, we observed that deregulated genes in tumors exhibit a cancer-type-specific commitment towards up- or down-regulation. Based on the individual information of deregulation given by PenDA, we were able to define two new molecular histologies for lung adenocarcinoma cancers strongly correlated to survival. In particular, we identified 37 biomarkers whose up-regulation lead to bad prognosis and that we validated on two independent cohorts. PenDA provides a robust, generic tool to extract personalized deregulation patterns that can then be used for the discovery of therapeutic targets and for personalized diagnosis. An open-access, user-friendly R package is available at https://github.com/bcm-uga/penda.<br />Author summary The hopes of precision medicine rely on our capacity to measure individual molecular information for personalized diagnosis and treatment. These challenging perspectives will be only possible with the development of efficient methodological tools to identify patient-specific molecular defects from the many precise molecular information that one can access at the single-individual, single tissue or even single-cell levels. Such methods will provide a better understanding of disease-specific biological mechanisms and will promote the development of personalized therapeutic strategies. Here we describe a novel method, named PenDA, to perform differential analysis of gene expression at the individual level. Based on a realistic benchmark of simulated tumors, we demonstrated that PenDA reaches very high efficiency in detecting sample-specific deregulated genes. We then applied the method to two large cohorts associated with lung cancer. A detailed statistical analysis of the results allowed to isolate genes with specific deregulation patterns, like genes that are up-regulated in all tumors or genes that are expressed but never deregulated in any tumors. Given their specificities, these genes are likely to be of interest in therapeutic research. In particular, we were able to identified 37 new biomarkers associated to bad prognosis that we validated on two independent cohorts.

Details

ISSN :
15537358 and 1553734X
Volume :
16
Issue :
5
Database :
OpenAIRE
Journal :
PLoS computational biology
Accession number :
edsair.doi.dedup.....2e0a34bb7d220b1c98e1e1dd2acb1daa
Full Text :
https://doi.org/10.1371/journal.pcbi.1007869⟩