Back to Search Start Over

Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption

Authors :
Nathaniel Leonard
Chang Hyuck Choi
Peter Strasser
Wen Ju
Shuang Li
Frédéric Jaouen
Mathias J.M. Primbs
Arne Thomas
Fang Luo
Technische Universität Berlin (TU)
Gwangju Institute of Science and Technology (GIST)
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
European Project: 779366,CRESCENDO
Technical University of Berlin / Technische Universität Berlin (TU)
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
ACS Catalysis, ACS Catalysis, American Chemical Society, 2019, 9, pp.4841-4852. ⟨10.1021/acscatal.9b00588⟩, ACS Catalysis, 2019, 9, pp.4841-4852. ⟨10.1021/acscatal.9b00588⟩
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

The number of catalytically active sites (site density, SD) and the catalytic turnover frequency (TOF) are critical for meaningful comparisons between catalytic materials and their rational improvement. SD and TOF numbers have remained elusive for PGM-free, metal/nitrogen-doped porous carbon electrocatalysts (MNC), in particular, FeNC materials that are now intensively investigated and widely utilized to catalyze the oxygen reduction reaction (ORR) in fuel cell cathodes. Here, we apply CO cryo sorption and desorption to evaluate SD and TOF numbers of a state-of-art FeNC ORR electrocatalyst with atomically dispersed coordinative FeNx (x ≤ 4) sites in acid and alkaline conditions. More specifically, we study the impact of thermal pretreatment conditions prior to assessing the number of sorption-active FeNx sites. We show that the pretreatment temperature sensitively affects the CO sorption uptake through a progressive thermal removal of airborne adsorbates, which, in turn, controls the resulting catalytic S...

Details

ISSN :
21555435
Volume :
9
Database :
OpenAIRE
Journal :
ACS Catalysis
Accession number :
edsair.doi.dedup.....2e45d3adbfac569c6ad5ed4e297e16ec
Full Text :
https://doi.org/10.1021/acscatal.9b00588