Back to Search
Start Over
Estimates of Occupational Inhalation Exposures to Six Oil-Related Compounds on the Four Rig Vessels Responding to the Deepwater Horizon Oil Spill
- Source :
- Ann Work Expo Health
- Publication Year :
- 2020
- Publisher :
- Oxford University Press (OUP), 2020.
-
Abstract
- Background The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the HelixQ4000] had some of the greatest potential for chemical exposures. Objectives The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. Methods Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with job titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. Results Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm (‘Inside/Other’, TP1b, DDII; and ‘Driller’, TP3, DDII) to 14.67 ppm (‘Methanol Operations’, TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. Conclusions Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill.
- Subjects :
- Descriptive statistics
Public Health, Environmental and Occupational Health
Original Articles
BTEX
010501 environmental sciences
Health outcomes
030210 environmental & occupational health
01 natural sciences
03 medical and health sciences
0302 clinical medicine
Adverse health effect
Deepwater horizon
Environmental health
Oil spill
Environmental science
0105 earth and related environmental sciences
Arithmetic mean
Subjects
Details
- ISSN :
- 23987316 and 23987308
- Volume :
- 66
- Database :
- OpenAIRE
- Journal :
- Annals of Work Exposures and Health
- Accession number :
- edsair.doi.dedup.....2e77b7d24a36a5c05570837d582293d3