Back to Search
Start Over
On the genericity of pseudo-Anosov braids II: conjugations to rigid braids
- Source :
- Groups, Geometry, and Dynamics, Groups, Geometry, and Dynamics, 2017, 11 (2), pp.549-565. ⟨10.4171/GGD/407⟩, Groups, Geometry, and Dynamics, European Mathematical Society, 2017, 11 (2), pp.549-565. ⟨10.4171/GGD/407⟩, Groups Geometry and Dynamics, Groups Geometry and Dynamics, European Mathematical Society, 2017, 11 (2), pp.549-565. 〈10.4171/GGD/407〉
- Publication Year :
- 2013
- Publisher :
- arXiv, 2013.
-
Abstract
- International audience; We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with n $\ge$ 3 strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius l tends to 1 exponentially quickly as l tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the conjugacy search problem can be solved in quadratic time. The idea behind both results is that generic braids can be conjugated "easily" into a rigid braid.
- Subjects :
- [ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]
Pure mathematics
20F36
20F65
20E45
media_common.quotation_subject
Braid group
02 engineering and technology
théorie des tresses
01 natural sciences
Mathematics - Geometric Topology
Mathematics::Group Theory
Conjugacy class
[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
Mathematics::Category Theory
Mathematics::Quantum Algebra
0202 electrical engineering, electronic engineering, information engineering
Braid
FOS: Mathematics
Discrete Mathematics and Combinatorics
Ball (mathematics)
0101 mathematics
Mathematics
media_common
Cayley graph
généricité
010102 general mathematics
Geometric Topology (math.GT)
16. Peace & justice
Infinity
Mathematics::Geometric Topology
Mapping class group
problème de conjugaison
Generating set of a group
020201 artificial intelligence & image processing
Geometry and Topology
Subjects
Details
- ISSN :
- 16617207 and 16617215
- Database :
- OpenAIRE
- Journal :
- Groups, Geometry, and Dynamics, Groups, Geometry, and Dynamics, 2017, 11 (2), pp.549-565. ⟨10.4171/GGD/407⟩, Groups, Geometry, and Dynamics, European Mathematical Society, 2017, 11 (2), pp.549-565. ⟨10.4171/GGD/407⟩, Groups Geometry and Dynamics, Groups Geometry and Dynamics, European Mathematical Society, 2017, 11 (2), pp.549-565. 〈10.4171/GGD/407〉
- Accession number :
- edsair.doi.dedup.....2e7de74f4cae21c7a3c0e7e396f0e7e3
- Full Text :
- https://doi.org/10.48550/arxiv.1309.6137