Back to Search Start Over

LVP-M3: Language-aware Visual Prompt for Multilingual Multimodal Machine Translation

Authors :
Guo, Hongcheng
Liu, Jiaheng
Huang, Haoyang
Yang, Jian
Li, Zhoujun
Zhang, Dongdong
Cui, Zheng
Wei, Furu
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

Multimodal Machine Translation (MMT) focuses on enhancing text-only translation with visual features, which has attracted considerable attention from both natural language processing and computer vision communities. Recent advances still struggle to train a separate model for each language pair, which is costly and unaffordable when the number of languages increases in the real world. In other words, the multilingual multimodal machine translation (Multilingual MMT) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for multiple languages. Besides, the image modality has no language boundaries, which is superior to bridging the semantic gap between languages. To this end, we first propose the Multilingual MMT task by establishing two new Multilingual MMT benchmark datasets covering seven languages. Then, an effective baseline LVP-M3 using visual prompts is proposed to support translations between different languages, which includes three stages (token encoding, language-aware visual prompt generation, and language translation). Extensive experimental results on our constructed benchmark datasets demonstrate the effectiveness of LVP-M3 method for Multilingual MMT.<br />Comment: Accepted by EMNLP 2022

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....2edb52d22a2a5b603edb5d37874c1fd5
Full Text :
https://doi.org/10.48550/arxiv.2210.15461