Back to Search Start Over

Ultrasonic synthesis of CuO nanoflakes: A robust electrochemical scaffold for the sensitive detection of phenolic hazard in water and pharmaceutical samples

Authors :
Kuo Yuan Hwa
Sekar Shankar
Palpandi Karuppaiah
N.S.K. Gowthaman
Vellaichamy Balakumar
Hong Ngee Lim
Source :
Ultrasonics Sonochemistry. 58:104649
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV–visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.

Details

ISSN :
13504177
Volume :
58
Database :
OpenAIRE
Journal :
Ultrasonics Sonochemistry
Accession number :
edsair.doi.dedup.....2edc8825e5822a44a23b15aef1832f8b