Back to Search
Start Over
Cyclooxygenase Reaction Mechanism of PGHS ------- Evidence for a Reversible Transition between a Pentadienyl Radical and a New Tyrosyl Radical by Nitric Oxide Trapping
- Publication Year :
- 2011
-
Abstract
- Incubation of prostaglandin H synthase-1 (PGHS-1) under anaerobic conditions with peroxide and arachidonic acid leads to two major radical species: a pentadienyl radical and a radical with a narrow EPR spectrum. The proportions of the two radicals are sensitive to temperature, favoring the narrow radical species at 22 °C. The EPR characteristics of this latter radical are somewhat similar to the previously reported narrow-singlet tyrosine radical NS1a and are insensitive to deuterium labeling of AA. To probe the origin and structure of this radical, we combined EPR analysis with nitric oxide (NO) trapping of tyrosine and substrate derived radicals for both PGHS-1 and -2. Formation of 3-nitrotyrosine in the proteins was analyzed by immunoblotting, whereas NO adducts to AA and AA metabolites were analyzed by mass spectrometry and by chromatography of 14 C-labeled products. The results indicate that both nitrated tyrosine residues and NO–AA adducts formed upon NO trapping. The predominant NO–AA adduct was an oxime at C11 of AA with three conjugated double bonds, as indicated by absorption at 275 nm and by mass spectral analysis. This adduct amounted to 10% and 20% of the heme concentration of PGHS-1 and -2, respectively. For PGHS-1, the yield of NO–AA adduct matched the yield of the narrow radical signal obtained in parallel EPR experiments. High frequency EPR characterization of this narrow radical, reported in an accompanying paper, supports assignment to a new tyrosyl radical, NS1c, rather than an AA-based radical. To reconcile the results from EPR and NO-trapping studies, we propose that NS1c is in equilibrium with an AA pentadienyl radical, and that the latter reacts preferentially with NO.
- Subjects :
- Reaction mechanism
Free Radicals
Radical
Photochemistry
Nitric Oxide
Biochemistry
Peroxide
Article
Mass Spectrometry
law.invention
Adduct
Inorganic Chemistry
chemistry.chemical_compound
law
Humans
Cyclooxygenase Inhibitors
Electron paramagnetic resonance
Heme
Chromatography, High Pressure Liquid
Chemistry
Electron Spin Resonance Spectroscopy
Temperature
Oxime
Alkadienes
Radical ion
Cyclooxygenase 2
Prostaglandin-Endoperoxide Synthases
Cyclooxygenase 1
Tyrosine
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....2f237e6a69aeef5c94acfb811d5d05d6