Back to Search Start Over

Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury

Authors :
Percy Nohama
Eddy Krueger
Eduardo Mendonça Scheeren
Lana Popović-Maneski
Jessika Mehret Fiusa
Guilherme Nunes Nogueira Neto
Source :
Research on Biomedical Engineering
Publication Year :
2020
Publisher :
Springer, 2020.

Abstract

Functional electrical stimulation (FES) is a method of activating paralyzed muscles. During FES application, fast muscle fatigue can occur (the inability of stimulated muscles to generate force). Therefore, it is beneficial to estimate the muscle fatigue for FES closed-loop control for walking to prevent unexpected muscle collapse and adapt the FES strategy in real time. Mechanomyography (MMG) is a noninvasive technique for registering myofiber vibrations, representing an ideal candidate for the provision of feedback. The hypothesis was that MMG signals could effectively detect muscle fatigue and, thus, provide feedback. We tested this hypothesis by analyzing the wavelet transform of signals from an MMG sensor positioned over the rectus femoris muscle during electrically evoked contractions in subjects with spinal cord injury (SCI). The signals were collected from a total of 24 lower limb muscles. We investigated both legs of 15 participants with spinal cord injury (male, YOA = 27.13 ± 5.05, M = 75.8 ± 10.35 kg, and H = 1.78 ± 0.07 m, American Spinal Injury Impairment Scale (AIS) A and B). All MMG signals were analyzed in 12 frequency bands from 5 to 53 Hz. We found different trends in the magnitudes in different frequency bands. The magnitude decreased in 13, 16, 20, 25, and 35 Hz bands in correlation with fatigue. The greatest statistical difference was found at 20 Hz and 25 Hz. This result suggests that processed MMG signals indicate muscle fatigue and can, thus, be used as the feedback in FES systems.

Details

Language :
English
Database :
OpenAIRE
Journal :
Research on Biomedical Engineering
Accession number :
edsair.doi.dedup.....2f26df5eab5a77e368f1ca7b39ccb769