Back to Search
Start Over
Insight into binding characteristics of copper(II) with water-soluble organic matter emitted from biomass burning at various pH values using EEM-PARAFAC and two-dimensional correlation spectroscopy analysis
- Source :
- Chemosphere. 278
- Publication Year :
- 2020
-
Abstract
- The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation–emission matrix (EEM) –PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237–239 nm and 307–309 nm) > moderate wavelength (267–269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM–PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.
- Subjects :
- Environmental Engineering
Health, Toxicology and Mutagenesis
0208 environmental biotechnology
chemistry.chemical_element
02 engineering and technology
010501 environmental sciences
01 natural sciences
Matrix (chemical analysis)
Environmental Chemistry
Organic matter
Biomass
Biomass burning
Humic Substances
0105 earth and related environmental sciences
chemistry.chemical_classification
Public Health, Environmental and Occupational Health
Water
General Medicine
General Chemistry
Chromophore
Straw
Hydrogen-Ion Concentration
Pollution
Copper
020801 environmental engineering
Water soluble
Spectrometry, Fluorescence
chemistry
Factor Analysis, Statistical
Two-dimensional nuclear magnetic resonance spectroscopy
Nuclear chemistry
Subjects
Details
- ISSN :
- 18791298
- Volume :
- 278
- Database :
- OpenAIRE
- Journal :
- Chemosphere
- Accession number :
- edsair.doi.dedup.....2f27b8881347c544c691c5a3ce76ab92