Back to Search
Start Over
The Andrews–Stanley partition function and Al-Salam–Chihara polynomials
- Source :
- Discrete Mathematics. 309:151-175
- Publication Year :
- 2009
- Publisher :
- Elsevier BV, 2009.
-
Abstract
- For any partition @l let @w(@l) denote the four parameter weight @w(@l)=a^@?^"^i^"^>=^"^1^@?^@l^"^2^"^i^"^-^"^1^/^2^@?b^@?^"^i^"^>=^"^1^@?^@l^"^2^"^i^"^-^"^1^/^2^@?c^@?^"^i^"^>=^"^1^@?^@l^"^2^"^i^/^2^@?d^@?^"^i^"^>=^"^1^@?^@l^"^2^"^i^/^2^@?, and let @?(@l) be the length of @l. We show that the generating function @[email protected](@l)z^@?^(^@l^), where the sum runs over all ordinary (resp. strict) partitions with parts each @?N, can be expressed by the Al-Salam-Chihara polynomials. As a corollary we derive Andrews' result by specializing some parameters and Boulet's results by letting N->+~. In the last section we prove a Pfaffian formula for the weighted sum @[email protected](@l)z^@?^(^@l^)P"@l(x) where P"@l(x) is Schur's P-function and the sum runs over all strict partitions.
- Subjects :
- Discrete mathematics
Basic hypergeometric series
Minor summation formula of Pfaffians
Pfaffian
Theoretical Computer Science
Combinatorics
Andrews–Stanley partition function
Discrete Mathematics and Combinatorics
Partition (number theory)
Schur’s Q-functions
Al-Salam–Chihara polynomials
Mathematics
Subjects
Details
- ISSN :
- 0012365X
- Volume :
- 309
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics
- Accession number :
- edsair.doi.dedup.....2f68e6cc87f309d8f7273bc1609ea7b4
- Full Text :
- https://doi.org/10.1016/j.disc.2007.12.064