Back to Search Start Over

Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis

Authors :
Hui-Young Lee
Ki Taek Nam
Byung Soh Min
Jae Sung Lee
Yu Seol Lee
Su Haeng Sung
Soo Han Bae
Hye Won Ji
Yong Ho Lee
Moon Joo Lee
Masaaki Komatsu
Joungmok Kim
Bong Soo Cha
Milim Lee
Yoomi Chun
Soohyun Kim
Da Hyun Lee
Dai Hoon Han
Gyuri Kim
Haengdueng Jeong
Jeong Su Park
Source :
Free Radical Biology and Medicine. 99:520-532
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Oxidative stress is important for the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a chronic disease that ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The nuclear factor erythroid 2-related factor 2-Kelch-like ECH associated protein 1 (Nrf2-Keap1) pathway is essential for cytoprotection against oxidative stress. In this study, we found that oxidative stress or inflammatory biomarkers and TUNEL positive cells were markedly increased in NASH patients compared to normal or simple steatosis. In addition, we identified that the hepatic mRNA levels of Nrf2 target genes such as Nqo-1 and GSTA-1 were significantly increased in NASH patients. Ezetimibe, a drug approved by the Food and Drug Administration for the treatment of hypercholesterolemia, improves NAFLD and alleviates oxidative stress. However, the precise mechanism of its antioxidant function remains largely unknown. We now demonstrate that ezetimibe activates Nrf2-Keap1 pathway which was dependent of autophagy adaptor protein p62, without causing cytotoxicity. Ezetimibe activates AMP-activated protein kinase (AMPK), which in turn phosphorylates p62 (p-S351) via their direct interaction. Correspondingly, Ezetimibe protected liver cells from saturated fatty acid-induced apoptotic cell death through p62-dependent Nrf2 activation. Furthermore, its role as an Nrf2 activator was supported by methione- and choline- deficient (MCD) diet-induced NASH mouse model, showing that ezetimibe decreased the susceptibility of the liver to oxidative injury. These data demonstrate that the molecular mechanisms underlying ezetimibe's antioxidant role in the pathogenesis of NASH.

Details

ISSN :
08915849
Volume :
99
Database :
OpenAIRE
Journal :
Free Radical Biology and Medicine
Accession number :
edsair.doi.dedup.....3057811e89f110c33e05eeb4ba4578f6
Full Text :
https://doi.org/10.1016/j.freeradbiomed.2016.09.009