Back to Search Start Over

Hamiltonian formalism for cosmological perturbations: the separate-universe approach

Authors :
Artigas Guimarey, Danilo
Grain, Julien
Vennin, Vincent
Institut d'astrophysique spatiale (IAS)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Source :
JCAP, JCAP, 2022, 02 (02), pp.001. ⟨10.1088/1475-7516/2022/02/001⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

The separate-universe approach provides an effective description of cosmological perturbations at large scales, where the universe can be described by an ensemble of independent, locally homogeneous and isotropic patches. By reducing the phase space to homogeneous and isotropic degrees of freedom, it greatly simplifies the analysis of large-scale fluctuations. It is also a prerequisite for the stochastic-inflation formalism. In this work, we formulate the separate-universe approach in the Hamiltonian formalism, which allows us to analyse the full phase-space structure of the perturbations. Such a phase-space description is indeed required in dynamical regimes which do not benefit from a background attractor, as well as to investigate quantum properties of cosmological perturbations. We find that the separate-universe approach always succeeds in reproducing the same phase-space dynamics for homogeneous and isotropic degrees of freedom as the full cosmological perturbation theory, provided that the wavelength of the modes under consideration are larger than some lower bound that we derive. We also compare the separate-universe approach and cosmological perturbation theory at the level of the gauge-matching procedure, where the agreement is not always guaranteed and requires specific matching prescriptions that we present.<br />Comment: Discussion around equation (4.12) expanded, few minor changes (main conclusions unchanged)

Details

Database :
OpenAIRE
Journal :
JCAP, JCAP, 2022, 02 (02), pp.001. ⟨10.1088/1475-7516/2022/02/001⟩
Accession number :
edsair.doi.dedup.....3188a029e95780f914a9ed3836c6ae69
Full Text :
https://doi.org/10.48550/arxiv.2110.11720