Back to Search
Start Over
Structural and Biochemical Analyses Reveal that Chlorogenic Acid Inhibits the Shikimate Pathway
- Source :
- J Bacteriol
- Publication Year :
- 2020
-
Abstract
- Chlorogenic acid (CGA) is a phenolic compound with well-known antibacterial properties against pathogens. In this study, structural and biochemical characterization was used to show the inhibitory role of CGA against the enzyme of the shikimate pathway, a well-characterized drug target in several pathogens. Here, we report the crystal structures of dehydroquinate synthase (DHQS), the second enzyme of the shikimate pathway, from Providencia alcalifaciens (PaDHQS), in binary complex with NAD and ternary complex with NAD and CGA. Structural analyses reveal that CGA occupies the substrate position in the active site of PaDHQS, which disables domain movements, leaving the enzyme in an open and catalysis-incompetent state. The binding analyses by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) show that CGA binds to PaDHQS with KD (equilibrium dissociation constant) values of 6.3 μM and 0.5 μM, respectively. In vitro enzyme inhibition studies show that CGA inhibits PaDHQS with a Ki of 235 ± 21 μM, while it inhibits the growth of Providencia alcalifaciens, Moraxella catarrhalis, Staphylococcus aureus, and Escherichia coli with MIC values of 60 to 100 μM. In the presence of aromatic amino acids supplied externally, CGA does not show the toxic effect. These results, along with the observations of the inhibition of the 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) regulatory domain by CGA in our previous study, suggest that CGA binds to shikimate pathway enzymes with high affinity and inhibits their catalysis and can be further exploited for designing novel drug-like molecules. IMPORTANCE The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents, as it is essential in plants, bacteria, and apicomplexan parasites but absent in humans. The enzymes of shikimate pathway are conserved among bacteria. Thus, the inhibitors of the shikimate pathway act on wide range of pathogens. We have identified that chlorogenic acid targets the enzymes of the shikimate pathway. The crystal structure of dehydroquinate synthase, the second enzyme of the pathway, in complex with chlorogenic acid and enzymatic inhibition studies explains the mechanism of inhibition of chlorogenic acid. These results suggest that chlorogenic acid has a good chemical scaffold and have important implications for its further development as a potent inhibitor of shikimate pathway enzymes.
- Subjects :
- Shikimic Acid
Providencia
Microbiology
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Chlorogenic acid
Bacterial Proteins
Catalytic Domain
Aromatic amino acids
Shikimate pathway
Molecular Biology
Ternary complex
030304 developmental biology
chemistry.chemical_classification
0303 health sciences
Binding Sites
biology
Active site
Enzyme structure
Anti-Bacterial Agents
Kinetics
Enzyme
Biochemistry
chemistry
biology.protein
NAD+ kinase
Chlorogenic Acid
Phosphorus-Oxygen Lyases
030217 neurology & neurosurgery
Protein Binding
Research Article
Subjects
Details
- ISSN :
- 10985530
- Volume :
- 202
- Issue :
- 18
- Database :
- OpenAIRE
- Journal :
- Journal of bacteriology
- Accession number :
- edsair.doi.dedup.....31a2519679ec267f98d20dd0eab07bae