Back to Search Start Over

In vivo estimation of water diffusivity in occluded human skin using terahertz reflection spectroscopy

Authors :
Edward P. J. Parrott
Alan Cottenden
Anil T. Ahuja
Rayko I. Stantchev
Qiushuo Sun
Tor-Wo Chiu
Jiarui Wang
Emma Pickwell-MacPherson
Source :
Journal of Biophotonics. 12:e201800145
Publication Year :
2018
Publisher :
Wiley, 2018.

Abstract

Water diffusion and the concentration profile within the skin significantly affect the surrounding chemical absorption and molecular synthesis. Occluding the skin causes water to accumulate in the top layer of the skin (the stratum corneum) and also affects the water diffusivity. Scar treatments such as silicone gel and silicone sheets make use of occlusion to increase skin hydration. However with existing techniques, it is not possible to quantitatively measure the diffusivity of the water during occlusion: current methods determine water diffusivity by measuring the water evaporated through the skin and thus require the skin to breathe. In this work we use the high sensitivity of terahertz light to water to study how the water content in the stratum corneum changes upon occlusion. From our measurements, we can solve the diffusion equations in the stratum corneum to deduce the water concentration profile in occluded skin and subsequently to determine the diffusivity. To our knowledge this is the first work showing how the diffusivity of human skin can be measured during occlusion and we envisage this paper as being used as a guide for non‐invasively determining the diffusivity of occluded human skin in vivo.

Details

ISSN :
1864063X
Volume :
12
Database :
OpenAIRE
Journal :
Journal of Biophotonics
Accession number :
edsair.doi.dedup.....31a2b63bdef6454671e7c930eb6d3a0a
Full Text :
https://doi.org/10.1002/jbio.201800145