Back to Search
Start Over
Arithmetic motivic Poincaré series of Toric varieties
- Source :
- E-Prints Complutense. Archivo Institucional de la UCM, instname, Algebra Number Theory 7, no. 2 (2013), 405-430, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, idUS. Depósito de Investigación de la Universidad de Sevilla
- Publication Year :
- 2013
- Publisher :
- Mathematical Science Publishers, 2013.
-
Abstract
- The arithmetic motivic Poincaré series of a variety V defined over a field of characteristic zero is an invariant of singularities that was introduced by Denef and Loeser by analogy with the Serre–Oesterlé series in arithmetic geometry. They proved that this motivic series has a rational form that specializes to the Serre-Oesterlé series when V is defined over the integers. This invariant, which is known explicitly for a few classes of singularities, remains quite mysterious. In this paper, we study this motivic series when V is an affine toric variety. We obtain a formula for the rational form of this series in terms of the Newton polyhedra of the ideals of sums of combinations associated to the minimal system of generators of the semigroup of the toric variety. In particular, we explicitly deduce a finite set of candidate poles for this invariant. Ministerio de Ciencia e Innovación
- Subjects :
- toric geometry
01 natural sciences
Mathematics - Algebraic Geometry
Polyhedron
0103 physical sciences
arithmetic motivic Poincaré series
0101 mathematics
Invariant (mathematics)
Arithmetic
14M25
Finite set
Mathematics
14B05
Algebra and Number Theory
Semigroup
010102 general mathematics
Toric geometry
Toric variety
14B05, 14J17,14M25
Arc spaces
Geometria algebraica
Arithmetic motivic Poincaré series
Poincaré series
Gravitational singularity
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
010307 mathematical physics
Affine transformation
Singularities
singularities
arc spaces
14J17
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- E-Prints Complutense. Archivo Institucional de la UCM, instname, Algebra Number Theory 7, no. 2 (2013), 405-430, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, idUS. Depósito de Investigación de la Universidad de Sevilla
- Accession number :
- edsair.doi.dedup.....31d520e1e7fc96fe3bc8de12964cb086