Back to Search Start Over

Arithmetic motivic Poincaré series of Toric varieties

Authors :
Helena Cobo Pablos
Pedro Daniel González Pérez
Universidad de Sevilla. Departamento de álgebra
Universidad de Sevilla. FQM218: Geometría Algebraica, Sistemas Diferenciales y Singularidades
Ministerio de Ciencia e Innovación (MICIN). España
Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven)
Departamento de Álgebra [Madrid]
Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)
Source :
E-Prints Complutense. Archivo Institucional de la UCM, instname, Algebra Number Theory 7, no. 2 (2013), 405-430, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, idUS. Depósito de Investigación de la Universidad de Sevilla
Publication Year :
2013
Publisher :
Mathematical Science Publishers, 2013.

Abstract

The arithmetic motivic Poincaré series of a variety V defined over a field of characteristic zero is an invariant of singularities that was introduced by Denef and Loeser by analogy with the Serre–Oesterlé series in arithmetic geometry. They proved that this motivic series has a rational form that specializes to the Serre-Oesterlé series when V is defined over the integers. This invariant, which is known explicitly for a few classes of singularities, remains quite mysterious. In this paper, we study this motivic series when V is an affine toric variety. We obtain a formula for the rational form of this series in terms of the Newton polyhedra of the ideals of sums of combinations associated to the minimal system of generators of the semigroup of the toric variety. In particular, we explicitly deduce a finite set of candidate poles for this invariant. Ministerio de Ciencia e Innovación

Details

Database :
OpenAIRE
Journal :
E-Prints Complutense. Archivo Institucional de la UCM, instname, Algebra Number Theory 7, no. 2 (2013), 405-430, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, idUS. Depósito de Investigación de la Universidad de Sevilla
Accession number :
edsair.doi.dedup.....31d520e1e7fc96fe3bc8de12964cb086