Back to Search Start Over

Machine Learning Prediction of Death in Critically Ill Patients With Coronavirus Disease 2019

Authors :
Matthew M. Churpek, MD, MPH, PhD
Shruti Gupta, MD, MPH
Alexandra B. Spicer, MS
Salim S. Hayek, MD
Anand Srivastava, MD, MPH
Lili Chan, MD, MSCR
Michal L. Melamed, MD, MHS
Samantha K. Brenner, MD, MPH
Jared Radbel, MD
Farah Madhani-Lovely, MD
Pavan K. Bhatraju, MD, MSc
Anip Bansal, MD
Adam Green, MD, MBA
Nitender Goyal, MD
Shahzad Shaefi, MD, MPH
Chirag R. Parikh, MD, PhD
Matthew W. Semler, MD
David E. Leaf, MD, MMSc
Carol P. Walther
Samaya J. Anumudu
Justin Arunthamakun
Kathleen F. Kopecky
Gregory P. Milligan
Peter A. McCullough
ThuyDuyen Nguyen
Shahzad Shaefi
Megan L. Krajewski
Sidharth Shankar
Ameeka Pannu
Juan D. Valencia
Sushrut S. Waikar
Zoe A. Kibbelaar
Ambarish M. Athavale
Peter Hart
Oyintayo Ajiboye
Matthew Itteera
Adam Green
Jean-Sebastien Rachoin
Christa A. Schorr
Lisa Shea
Daniel L. Edmonston
Christopher L. Mosher
Alexandre M. Shehata
Zaza Cohen
Valerie Allusson
Gabriela Bambrick-Santoyo
Noor ul aain Bhatti
Bijal Metha
Aquino Williams
Samantha K. Brenner
Patricia Walters
Ronaldo C. Go
Keith M. Rose
Miguel A. Hernán
Amy M. Zhou
Ethan C. Kim
Rebecca Lisk
Lili Chan
Kusum S. Mathews
Steven G. Coca
Deena R. Altman
Aparna Saha
Howard Soh
Huei Hsun Wen
Sonali Bose
Emily Leven
Jing G. Wang
Gohar Mosoyan
Girish N. Nadkarni
Allon N. Friedman
John Guirguis
Rajat Kapoor
Christopher Meshberger
Chirag R. Parikh
Brian T. Garibaldi
Celia P. Corona-Villalobos
Yumeng Wen
Steven Menez
Rubab F. Malik
Carmen Elena Cervantes
Samir C. Gautam
Crystal Chang
H. Bryant Nguyen
Afshin Ahoubim
Leslie F. Thomas
Pramod K. Guru
Paul A. Bergl
Yan Zhou
Jesus Rodriguez
Jatan A. Shah
Mrigank S. Gupta
Princy N. Kumar
Deepa G. Lazarous
Seble G. Kassaye
Michal L. Melamed
Tanya S. Johns
Ryan Mocerino
Kalyan Prudhvi
Denzel Zhu
Rebecca V. Levy
Yorg Azzi
Molly Fisher
Milagros Yunes
Kaltrina Sedaliu
Ladan Golestaneh
Maureen Brogan
Jyotsana Thakkar
Neelja Kumar
Michael J. Ross
Michael Chang
Ritesh Raichoudhury
Edward J. Schenck
Soo Jung Cho
Maria Plataki
Sergio L. Alvarez-Mulett
Luis G. Gomez-Escobar
Di Pan
Stefi Lee
Jamuna Krishnan
William Whalen
David Charytan
Ashley Macina
Daniel W. Ross
Anand Srivastava
Alexander S. Leidner
Carlos Martinez
Jacqueline M. Kruser
Richard G. Wunderink
Alexander J. Hodakowski
Juan Carlos Q. Velez
Eboni G. Price-Haywood
Luis A. Matute-Trochez
Anna E. Hasty
Muner MB. Mohamed
Rupali S. Avasare
David Zonies
David E. Leaf
Shruti Gupta
Rebecca M. Baron
Meghan E. Sise
Erik T. Newman
Samah Abu Omar
Kapil K. Pokharel
Shreyak Sharma
Harkarandeep Singh
Simon Correa Gaviria
Tanveer Shaukat
Omer Kamal
Wei Wang
Heather Yang
Jeffery O. Boateng
Meghan Lee
Ian A. Strohbehn
Jiahua Li
Saif A. Muhsin
Ernest I. Mandel
Ariel L. Mueller
Nicholas S. Cairl
Farah Madhani-Lovely
Chris Rowan
Farah Madhai-Lovely
Vasil Peev
Jochen Reiser
John J. Byun
Andrew Vissing
Esha M. Kapania
Zoe Post
Nilam P. Patel
Joy-Marie Hermes
Anne K. Sutherland
Amee Patrawalla
Diana G. Finkel
Barbara A. Danek
Sowminya Arikapudi
Jeffrey M. Paer
Jared Radbel
Sonika Puri
Jag Sunderram
Matthew T. Scharf
Ayesha Ahmed
Ilya Berim
Jayanth Vatson
Shuchi Anand
Joseph E. Levitt
Pablo Garcia
Suzanne M. Boyle
Rui Song
Jingjing Zhang
Moh’d A. Sharshir
Vadym V. Rusnak
Anip Bansal
Amber S. Podoll
Michel Chonchol
Sunita Sharma
Ellen L. Burnham
Arash Rashidi
Rana Hejal
Eric Judd
Laura Latta
Ashita Tolwani
Timothy E. Albertson
Jason Y. Adams
Steven Y. Chang
Rebecca M. Beutler
Carl E. Schulze
Etienne Macedo
Harin Rhee
Kathleen D. Liu
Vasantha K. Jotwani
Jay L. Koyner
Chintan V. Shah
Vishal Jaikaransingh
Stephanie M. Toth-Manikowski
Min J. Joo
James P. Lash
Javier A. Neyra
Nourhan Chaaban
Alfredo Iardino
Elizabeth H. Au
Jill H. Sharma
Marie Anne Sosa
Sabrina Taldone
Gabriel Contreras
David De La Zerda
Hayley B. Gershengorn
Salim S. Hayek
Pennelope Blakely
Hanna Berlin
Tariq U. Azam
Husam Shadid
Michael Pan
Patrick O’ Hayer
Chelsea Meloche
Rafey Feroze
Kishan J. Padalia
Jeff Leya
John P. Donnelly
Andrew J. Admon
Jennifer E. Flythe
Matthew J. Tugman
Brent R. Brown
Amanda K. Leonberg-Yoo
Ryan C. Spiardi
Todd A. Miano
Meaghan S. Roche
Charles R. Vasquez
Amar D. Bansal
Natalie C. Ernecoff
Csaba P. Kovesdy
Miklos Z. Molnar
S. Susan Hedayati
Mridula V. Nadamuni
Sadaf S. Khan
Duwayne L. Willett
Samuel A.P. Short
Amanda D. Renaghan
Pavan Bhatraju
A. Bilal Malik
Matthew W. Semler
Anitha Vijayan
Christina Mariyam Joy
Tingting Li
Seth Goldberg
Patricia F. Kao
Greg L. Schumaker
Nitender Goyal
Anthony J. Faugno
Caroline M. Hsu
Asma Tariq
Leah Meyer
Marta Christov
Francis P. Wilson
Tanima Arora
Ugochukwu Ugwuowo
Source :
Critical Care Explorations, Vol 3, Iss 8, p e0515 (2021), Critical Care Explorations
Publication Year :
2021
Publisher :
Wolters Kluwer, 2021.

Abstract

Supplemental Digital Content is available in the text.<br />OBJECTIVES: Critically ill patients with coronavirus disease 2019 have variable mortality. Risk scores could improve care and be used for prognostic enrichment in trials. We aimed to compare machine learning algorithms and develop a simple tool for predicting 28-day mortality in ICU patients with coronavirus disease 2019. DESIGN: This was an observational study of adult patients with coronavirus disease 2019. The primary outcome was 28-day inhospital mortality. Machine learning models and a simple tool were derived using variables from the first 48 hours of ICU admission and validated externally in independent sites and temporally with more recent admissions. Models were compared with a modified Sequential Organ Failure Assessment score, National Early Warning Score, and CURB-65 using the area under the receiver operating characteristic curve and calibration. SETTING: Sixty-eight U.S. ICUs. PATIENTS: Adults with coronavirus disease 2019 admitted to 68 ICUs in the United States between March 4, 2020, and June 29, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The study included 5,075 patients, 1,846 (36.4%) of whom died by day 28. eXtreme Gradient Boosting had the highest area under the receiver operating characteristic curve in external validation (0.81) and was well-calibrated, while k-nearest neighbors were the lowest performing machine learning algorithm (area under the receiver operating characteristic curve 0.69). Findings were similar with temporal validation. The simple tool, which was created using the most important features from the eXtreme Gradient Boosting model, had a significantly higher area under the receiver operating characteristic curve in external validation (0.78) than the Sequential Organ Failure Assessment score (0.69), National Early Warning Score (0.60), and CURB-65 (0.65; p < 0.05 for all comparisons). Age, number of ICU beds, creatinine, lactate, arterial pH, and Pao2/Fio2 ratio were the most important predictors in the eXtreme Gradient Boosting model. CONCLUSIONS: eXtreme Gradient Boosting had the highest discrimination overall, and our simple tool had higher discrimination than a modified Sequential Organ Failure Assessment score, National Early Warning Score, and CURB-65 on external validation. These models could be used to improve triage decisions and clinical trial enrichment.

Details

Language :
English
ISSN :
26398028
Volume :
3
Issue :
8
Database :
OpenAIRE
Journal :
Critical Care Explorations
Accession number :
edsair.doi.dedup.....31e93c116c9be5c5a5591ff3241148ee
Full Text :
https://doi.org/10.1097/CCE.0000000000000515