Back to Search Start Over

Black-box Optimization Benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 Noiseless Testbed

Authors :
Ilya Loshchilov
Marc Schoenauer
Michele Sebag
Machine Learning and Optimisation (TAO)
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
This work was partially funded by FUI of System@tic Paris-Region ICT cluster through contract DGT 117 407 {\em Complex Systems Design Lab} (CSDL).
Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
Source :
Workshop Proceedings of the {GECCO} Genetic and Evolutionary Computation Conference, Workshop Proceedings of the {GECCO} Genetic and Evolutionary Computation Conference, Jul 2012, Philadelphia, United States, Workshop Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2012, Philadelphia, United States
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In this paper, we study the performance of NIPOP-aCMA-ES and NBIPOP-aCMA-ES, recently proposed alternative restart strategies for CMA-ES. Both algorithms were tested using restarts till a total number of function evaluations of $10^6D$ was reached, where $D$ is the dimension of the function search space. We compared new strategies to CMA-ES with IPOP and BIPOP restart schemes, two algorithms with one of the best overall performance observed during the BBOB-2009 and BBOB-2010. We also present the first benchmarking of BIPOP-CMA-ES with the weighted active covariance matrix update (BIPOP-aCMA-ES). The comparison shows that NIPOP-aCMA-ES usually outperforms IPOP-aCMA-ES and has similar performance with BIPOP-aCMA-ES, using only the regime of increasing the population size. The second strategy, NBIPOP-aCMA-ES, outperforms BIPOP-aCMA-ES in dimension 40 on weakly structured multi-modal functions thanks to the adaptive allocation of computation budgets between the regimes of restarts.

Details

Language :
English
Database :
OpenAIRE
Journal :
Workshop Proceedings of the {GECCO} Genetic and Evolutionary Computation Conference, Workshop Proceedings of the {GECCO} Genetic and Evolutionary Computation Conference, Jul 2012, Philadelphia, United States, Workshop Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2012, Philadelphia, United States
Accession number :
edsair.doi.dedup.....320be9892e22ed6624bc4a5a915a145a