Back to Search Start Over

Electrophysiological Changes During Early Steps of Retinitis Pigmentosa

Authors :
Beatrice M. Tam
Colette N Chiu
Vincent Torre
Orson L. Moritz
Ulisse Bocchero
Source :
Investigative Opthalmology & Visual Science. 60:933
Publication Year :
2019
Publisher :
Association for Research in Vision and Ophthalmology (ARVO), 2019.

Abstract

Purpose The rhodopsin mutation P23H is responsible for a significant portion of autosomal-dominant retinitis pigmentosa, a disorder characterized by rod photoreceptor death. The mechanisms of toxicity remain unclear; previous studies implicate destabilization of P23H rhodopsin during light exposure, causing decreased endoplasmic reticulum (ER) exit and ER stress responses. Here, we probed phototransduction in Xenopus laevis rods expressing bovine P23H rhodopsin, in which retinal degeneration is inducible by light exposure, in order to examine early physiological changes that occur during retinal degeneration. Methods We recorded single-cell and whole-retina responses to light stimuli using electrophysiology. Moreover, we monitored morphologic changes in rods after different periods of light exposure. Results Initially, P23H rods had almost normal photoresponses, but following a brief light exposure varying from 4 to 32 photoisomerizations per disc, photoresponses became irreversibly prolonged. In intact retinas, rods began to shed OS fragments after a rod-saturating exposure of 12 minutes, corresponding to approximately 10 to 100 times more photoisomerizations. Conclusions Our results indicate that in P23H rods light-induced degeneration occurs in at least two stages, the first involving impairment of phototransduction and the second involving initiation of morphologic changes.

Details

ISSN :
15525783
Volume :
60
Database :
OpenAIRE
Journal :
Investigative Opthalmology & Visual Science
Accession number :
edsair.doi.dedup.....321f54c7aad78330f2e75bd7a3ad61d0
Full Text :
https://doi.org/10.1167/iovs.18-25347