Back to Search Start Over

In-situ Platinum Plasmon Resonance Effect Prompt Titanium Dioxide Nanocube Photocatalytic Hydrogen Evolution

Authors :
Shan Hu
Baojiang Jiang
Fuxiang Li
Yunqi Fu
Panzhe Qiao
Chen Zhao
Qingmao Feng
Xudong Xiao
Source :
Chemistry - An Asian Journal. 14:592-596
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Herein, Pt-decorated TiO2 nanocube hierarchy structure (Pt-TNCB) was fabricated by a facile solvothermal synthesis and in-situ photodeposition strategy. The Pt-TNCB exhibits an excellent solar-driven photocatalytic hydrogen evolution rate (337.84 μmol h-1 ), which is about 37 times higher than that of TNCB (9.19 μmol h-1 ). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h-1 ). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar-driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron-hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt-TNCB photocatalyst with SPR effect may provide a promising method to improve visible-light photocatalytic activities for traditional photocatalysts.

Details

ISSN :
18614728
Volume :
14
Database :
OpenAIRE
Journal :
Chemistry - An Asian Journal
Accession number :
edsair.doi.dedup.....32243853780031d0835b42210504edb1
Full Text :
https://doi.org/10.1002/asia.201801893