Back to Search
Start Over
A Tauberian theorem for ideal statistical convergence
- Publication Year :
- 2019
-
Abstract
- Given an ideal $\mathcal{I}$ on the positive integers, a real sequence $(x_n)$ is said to be $\mathcal{I}$-statistically convergent to $\ell$ provided that $$ \textstyle \left\{n \in \mathbf{N}: \frac{1}{n}|\{k \le n: x_k \notin U\}| \ge \varepsilon\right\} \in \mathcal{I} $$ for all neighborhoods $U$ of $\ell$ and all $\varepsilon>0$. First, we show that $\mathcal{I}$-statistical convergence coincides with $\mathcal{J}$-convergence, for some unique ideal $\mathcal{J}=\mathcal{J}(\mathcal{I})$. In addition, $\mathcal{J}$ is Borel [analytic, coanalytic, respectively] whenever $\mathcal{I}$ is Borel [analytic, coanalytic, resp.]. Then we prove, among others, that if $\mathcal{I}$ is the summable ideal $\{A\subseteq \mathbf{N}: \sum_{a \in A}1/a<br />Comment: 15 pages, comments are welcome
- Subjects :
- General Mathematics
Tauberian condition
010103 numerical & computational mathematics
Statistical convergence
01 natural sciences
Combinatorics
Ideal statistical convergence
Convergence (routing)
FOS: Mathematics
Ideal (ring theory)
0101 mathematics
Classical theorem
Generalized density ideal
Mathematics
Mathematics - General Topology
Sequence
Maximal ideals
010102 general mathematics
General Topology (math.GN)
Submeasures
Zero element
Functional Analysis (math.FA)
Mathematics - Functional Analysis
Mathematics::Logic
40A35, 11B05, 54A20
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....3226f4ac05282de57403dbcd9f3668c0