Back to Search Start Over

Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

Authors :
Barbara L. Giles
Robert E. Ergun
John C. Dorelli
Roy B. Torbert
Shihyan Lee
H. Lai
Shan Wang
Narges Ahmadi
David M. Malaspina
James L. Burch
Scott A. Boardsen
K. A. Goodrich
Thomas E. Moore
Hanying Wei
Yu. V. Khotyaintsev
W. R. Paterson
Lynn B. Wilson
Adolfo F. Viñas
C. J. Pollock
L. J. Chen
Daniel J. Gershman
Benoit Lavraud
Naoki Bessho
Ari Le
Robert J. Strangeway
Michael Hesse
Steven J. Schwartz
O. Le Contel
Christopher T. Russell
Levon A. Avanov
Per-Arne Lindqvist
Frederick Wilder
NASA Goddard Space Flight Center (GSFC)
Laboratoire de Physique des Plasmas (LPP)
Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Alfven Laboratory
Royal Institute of Technology [Stockholm] (KTH )
Source :
Physical Review Letters, Physical Review Letters, American Physical Society, 2018, 120, pp.225101. ⟨10.1103/PhysRevLett.120.225101⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

Details

Language :
English
ISSN :
00319007 and 10797114
Database :
OpenAIRE
Journal :
Physical Review Letters, Physical Review Letters, American Physical Society, 2018, 120, pp.225101. ⟨10.1103/PhysRevLett.120.225101⟩
Accession number :
edsair.doi.dedup.....322b014f50ca893eabbb1dfef9d14d63
Full Text :
https://doi.org/10.1103/PhysRevLett.120.225101⟩