Back to Search
Start Over
Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer
- Source :
- ACS applied materialsinterfaces.
- Publication Year :
- 2022
-
Abstract
- Pyroptosis, as a novel mode of cell death, has been proven to have impressive antitumor effects. Dying cells undergoing pyroptosis can elicit antitumor immunity by the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Accordingly, developing an effective, stable, and controllable nanoplatform that can promote these two side effects is a promising option for cancer therapy. In this study, we designed a carrier-free chemo-photodynamic nanoplatform (A-C/NPs) using a co-assembly strategy with cytarabine (Ara-C) and chlorin e6 (Ce6) to induce pyroptosis and a subsequent immune response against breast cancer. Mechanistically, A-C/NPs can trigger GSDME-mediated pyroptosis in a controllable manner through reactive oxygen species (ROS) accumulation, causing immunogenic cell death (ICD), in which dying cells release high-mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and calcitonin (CRT). Additionally, Ara-C can stimulate the maturation of cytotoxic T lymphocytes to act synergistically with Ce6-mediated immunogenic cell death (ICD), collectively augmenting the anticancer effect of A-C/NPs. The A-C/NPs showed excellent suppressive effects on the growth of orthotopic, abscopal, and recurrent tumors in a breast cancer mouse model. The chemo-photodynamic therapy (PDT) using the proposed nanomedicine strategy could be a novel strategy for triggering pyroptosis and improving the global anticancer immune response.
- Subjects :
- General Materials Science
Subjects
Details
- ISSN :
- 19448252
- Database :
- OpenAIRE
- Journal :
- ACS applied materialsinterfaces
- Accession number :
- edsair.doi.dedup.....3269fd056cb3ae061a5f8c83e4a75ff1