Back to Search
Start Over
Synthesis of new silicas with high stable and large mesopores and macropores for biocatalysis applications
- Source :
- Materials scienceengineering. C, Materials for biological applications. 32(6)
- Publication Year :
- 2011
-
Abstract
- Monomodal or bimodal porous silicas with large mesopores, constituted by particles or having a monolithic (block type) morphology, respectively, are synthesized using sodium silicate as siliceous species source, cetyltrimethylammonium bromide (CTAB) as pore template and ethyl acetate (EtAc) as pH modifier. The monomodal porosity is represented by 20-30 nm pores and the bimodal one by these pores and also macropores. These characteristics are modulated in function of the CTAB and EtAc concentrations as well as the pH and hydrothermal treatment. The role of these reagents upon the porosity is rationalized. The presence of high CTAB concentration and a rather low pH decreasing rate (function of EtAc concentration and hydrothermal treatment) are essential for having the already known bimodal mesoporous silicas (BMS). On the contrary a rather high pH decreasing rate promotes the formation of the new bimodal mesoporous-macroporous silicas (BMMS) synthesized in this work, where the EtAc also plays the role of emulsion forming agent. The hydrolytic stability of the synthesized silica under aqueous conditions, at different pH values, makes these silicas good candidates for application in different areas of catalysis, especially in the enzymatic one.
- Subjects :
- Aqueous solution
Materials science
Silicon dioxide
Cetrimonium
Water
Bioengineering
Sodium silicate
Acetates
Hydrogen-Ion Concentration
Silicon Dioxide
Catalysis
Biomaterials
chemistry.chemical_compound
chemistry
Chemical engineering
Mechanics of Materials
Bromide
Emulsion
Biocatalysis
Cetrimonium Compounds
Organic chemistry
Emulsions
Mesoporous material
Porosity
Subjects
Details
- ISSN :
- 18730191
- Volume :
- 32
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- Materials scienceengineering. C, Materials for biological applications
- Accession number :
- edsair.doi.dedup.....32b7022f27ae066b7f54bf851ca9b4ec