Back to Search Start Over

Characterization of Dissolved Organic Matter from Wildfire-induced Microcystis aeruginosa Blooms controlled by Copper Sulfate as Disinfection Byproduct Precursors Using APPI(-) and ESI(-) FT-ICR MS

Authors :
Yina Liu
Huan Chen
Alex T. Chow
Nikola Tolić
Rosalie K. Chu
Sarah D. Burton
Kuo-Pei Tsai
Tanju Karanfil
Source :
Water research. 189
Publication Year :
2020

Abstract

Copper-based algaecides are usually used for controlling algae bloom triggered by the elevated levels of nutrients after wildfires, resulting in the promoted reactivity of dissolved organic matter (DOM) in forming disinfectant byproducts (DBPs). To identify the best strategy for handling this source water, we employed Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterize the DBPs precursors after 4-d Microcystis aeruginosa bloom cultured with black (BE) and white (WE) ash water extracts under 0, 0.5, and 1.0 mg-Cu/L. The disappeared DOM during disinfections, primarily composed of O1-14, N1O1-14 and N2O1-14, had a higher average molecular weight (MW) and double-bond equivalent (DBE), relative to DOM after incubation, regardless of disinfects and Cu2+. This result suggests assigned features with larger MW and more double bonds/rings as preferable DBP precursors. We observed a larger number of disappeared assigned features with low DBE of 1-10 in control without Cu2+ addition, possibly explaining lower DOM chlorine reactivity in forming carbonaceous and oxygenated DBPs, relative to the treatments with Cu2+ addition. We found a larger number of O1-14 and N1O1-14 with DBE=5-16 in the treatments, potentially explaining higher DOM chloramine reactivity in forming N-nitrosodimethylamine (NDMA), compared to the control. Our study suggests removing oxygen- and nitrogen-containing organic compounds with more double bonds/aromatic rings as a preferable strategy for handling source water after controlling post-fire algae blooms with copper sulfate.

Details

ISSN :
18792448
Volume :
189
Database :
OpenAIRE
Journal :
Water research
Accession number :
edsair.doi.dedup.....330b51c511145ed7d52f3de63f84e5cd