Back to Search Start Over

Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning

Authors :
Li-Chen Shi
Bao-Liang Lu
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2010
Publication Year :
2010

Abstract

For many human machine interaction systems, to ensure work safety, the techniques for continuously estimating the vigilance of operators are highly desirable. Up to now, various methods based on electroencephalogram (EEG) are proposed to solve this problem. However, most of them are static methods and are based on supervised learning strategy. The main deficiencies of the existing methods are that the label information is hard to get and the time dependency of vigilance changes are ignored. In this paper, we introduce the dynamic characteristics of vigilance changes into vigilance estimation and propose a novel model based on linear dynamical system and manifold learning techniques to implement off-line and online vigilance estimation. In this model, both spatial information of EEG and temporal information of vigilance changes are used. The label information what we need is merely to know which EEG indices are important for vigilance estimation. Experimental results show that the mean off-line and on-line correlation coefficients between estimated vigilance level and local error rate in second-scale without being averaged are 0.89 and 0.83, respectively.

Details

ISSN :
23757477
Volume :
2010
Database :
OpenAIRE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accession number :
edsair.doi.dedup.....334bb094b39e2ac7266fb57e3969ee72