Back to Search
Start Over
Sensing Protein Quality in Cardiac Myocytes: p62 Triggers a Lysosomal Response
- Source :
- Circ Res
- Publication Year :
- 2020
-
Abstract
- RATIONALE: The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) are pivotal to proteostasis. Targeting these pathways is emerging as an attractive strategy for treating cancer. However, a significant proportion of patients who receive a proteasome inhibitor-containing regime show cardiotoxicity. Moreover, UPS and ALP defects are implicated in cardiac pathogenesis. Hence, a better understanding of the cross-talk between the two catabolic pathways will help advance cardiac pathophysiology and medicine. OBJECTIVE: Systemic proteasome inhibition (PSMI) was shown to increase p62/SQSTM1 expression and induce myocardial macroautophagy. Here we investigate how proteasome malfunction activates cardiac ALP. METHODS AND RESULTS: Myocardial macroautophagy, transcription factor EB (TFEB) expression and activity, and p62 expression were markedly increased in mice with either cardiomyocyte-restricted ablation of Psmc1 (an essential proteasome subunit gene) or pharmacological PSMI. In cultured cardiomyocytes, PSMI-induced increases in TFEB activation and p62 expression were blunted by pharmacological and genetic calcineurin inhibition and by siRNA-mediated Molcn1 silencing. PSMI induced remarkable increases in myocardial autophagic flux in wild type (WT) mice but not p62 null (p62-KO) mice. Bortezomib-induced left ventricular wall thickening and diastolic malfunction was exacerbated by p62 deficiency. In cultured cardiomyocytes from WT mice but not p62-KO mice, PSMI induced increases in LC3-II flux and the lysosomal removal of ubiquitinated proteins. Myocardial TFEB activation by PSMI as reflected by TFEB nuclear localization and target gene expression was strikingly less in p62-KO mice compared with WT mice. CONCLUSIONS: (1) The activation of cardiac macroautophagy by proteasomal malfunction is mediated by the Mocln1-calcineurin-TFEB-p62 pathway; (2) p62 unexpectedly exerts a feed-forward effect on TFEB activation by proteasome malfunction; and (3) targeting the Mcoln1-calcineurin-TFEB-p62 pathway may provide new means to intervene cardiac ALP activation during proteasome malfunction.
- Subjects :
- Proteasome Endopeptidase Complex
biology
Physiology
Chemistry
Calcineurin
Autophagy
medicine.disease
Article
Cell biology
Proteasome
Ubiquitin
Heart failure
Macroautophagy
medicine
biology.protein
Myocyte
Myocytes, Cardiac
Lysosomes
Cardiology and Cardiovascular Medicine
Transcription factor
Protein quality
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Circ Res
- Accession number :
- edsair.doi.dedup.....33a1baa65cad5b53db83673f1445a19d