Back to Search
Start Over
Ownership Verification of DNN Architectures via Hardware Cache Side Channels
- Source :
- IEEE Transactions on Circuits and Systems for Video Technology. 32:8078-8093
- Publication Year :
- 2022
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2022.
-
Abstract
- Deep Neural Networks (DNN) are gaining higher commercial values in computer vision applications, e.g., image classification, video analytics, etc. This calls for urgent demands of the intellectual property (IP) protection of DNN models. In this paper, we present a novel watermarking scheme to achieve the ownership verification of DNN architectures. Existing works all embedded watermarks into the model parameters while treating the architecture as public property. These solutions were proven to be vulnerable by an adversary to detect or remove the watermarks. In contrast, we claim the model architectures as an important IP for model owners, and propose to implant watermarks into the architectures. We design new algorithms based on Neural Architecture Search (NAS) to generate watermarked architectures, which are unique enough to represent the ownership, while maintaining high model usability. Such watermarks can be extracted via side-channel-based model extraction techniques with high fidelity. We conduct comprehensive experiments on watermarked CNN models for image classification tasks and the experimental results show our scheme has negligible impact on the model performance, and exhibits strong robustness against various model transformations and adaptive attacks.<br />The paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology
- Subjects :
- FOS: Computer and information sciences
Computer Science - Cryptography and Security
Cache Side Channel
Computer science and engineering::Computing methodologies::Artificial intelligence [Engineering]
Media Technology
Computer science and engineering [Engineering]
ComputingMilieux_LEGALASPECTSOFCOMPUTING
Deep Neural Network
Watermarking
Electrical and Electronic Engineering
Cryptography and Security (cs.CR)
Subjects
Details
- ISSN :
- 15582205 and 10518215
- Volume :
- 32
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Circuits and Systems for Video Technology
- Accession number :
- edsair.doi.dedup.....33e23a706d00c09e679569dbd161ab3d