Back to Search
Start Over
Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling
- Source :
- The Cryosphere, 14(10), 3367. Copernicus Publications, The Cryosphere, 14(10), The Cryosphere, 14 (10, The Cryosphere, Vol 14, Pp 3367-3380 (2020)
- Publication Year :
- 2020
-
Abstract
- About 20 % of all snow accumulation in Antarctica occurs on the ice shelves. There, ice rises control the spatial surface mass balance (SMB) distribution by inducing snowfall variability and wind erosion due to their topography. Moreover these ice rises buttress the ice flow and represent ideal drilling locations for ice cores. In this study we assess the connection between snowfall variability and wind erosion to provide a better understanding of how ice rises impact SMB variability, how well this is captured in the regional atmospheric climate model RACMO2 and the implications of this SMB variability for ice rises as an ice core drilling site. By combining ground-penetrating radar (GPR) profiles from two ice rises in Dronning Maud Land with ice core dating, we reconstruct spatial and temporal SMB variations from 1983 to 2018 and compare the observed SMB with output from RACMO2 and SnowModel. Our results show snowfall-driven differences of up to 1.5 times higher SMB on the windward side of both ice rises than on the leeward side as well as a local erosion-driven minimum at the ice divide of the ice rises. RACMO2 captures the snowfall-driven differences but overestimates their magnitude, whereas the erosion on the peak can be reproduced by SnowModel with RACMO2 forcing. Observed temporal variability of the average SMBs, retrieved from the GPR data for four time intervals in the 1983–2018 range, are low at the peak of the easternmost ice rise (∼0.06 mw.e.yr-1), while they are higher (∼0.09 mw.e.yr-1) on the windward side of the ice rise. This implies that at the peak of the ice rise, higher snowfall, driven by orographic uplift, is balanced out by local erosion. As a consequence of this, the SMB recovered from the ice core matches the SMB from the GPR at the peak of the ice rise but not at the windward side of the ice rise, suggesting that the SMB signal is damped in the ice core.<br />info:eu-repo/semantics/published
- Subjects :
- 010504 meteorology & atmospheric sciences
DRONNING MAUD LAND
Ice stream
F700
F800
010502 geochemistry & geophysics
Atmospheric sciences
01 natural sciences
Ice shelf
LAYERS
Glacier mass balance
Ice core
REGIONAL CLIMATE MODEL
CORE
Ice divide
Geosciences, Multidisciplinary
lcsh:Environmental sciences
0105 earth and related environmental sciences
Earth-Surface Processes
Water Science and Technology
Orographic lift
lcsh:GE1-350
geography
geography.geographical_feature_category
Science & Technology
lcsh:QE1-996.5
Geology
Snow
RADAR
lcsh:Geology
Geography, Physical
SNOW ACCUMULATION
VARIABILITY
Oceanography
Physical Geography
Physical Sciences
MAP
Climate model
Sciences exactes et naturelles
Subjects
Details
- Language :
- English
- ISSN :
- 19940416 and 19940424
- Database :
- OpenAIRE
- Journal :
- The Cryosphere, 14(10), 3367. Copernicus Publications, The Cryosphere, 14(10), The Cryosphere, 14 (10, The Cryosphere, Vol 14, Pp 3367-3380 (2020)
- Accession number :
- edsair.doi.dedup.....344a619eb1a5e35f4455a1d66276f3db