Back to Search
Start Over
Increased electrode activity during geosmin oxidation provided by Pt nanoparticle-embedded nanocarbon film
- Source :
- Nanoscale. 11:8845-8854
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- The musty odor compound geosmin was electrochemically detected by using Pt nanoparticle (PtNP)-embedded nanocarbon (Pt-C) films formed with unbalanced magnetron (UBM) co-sputtering. The sputtered Pt components formed NPs (typically 1.53-4.75 nm in diameter) spontaneously in the carbon films, owing to the poor intermiscibility of Pt with carbon. The surface concentrations of PtNPs embedded in the nanocarbon film were widely controllable (Pt = 4.8-35.9 at%) by regulating the target powers of the Pt and carbon individually. The obtained film had a flat surface (Ra = 0.17-0.18 nm) despite the fact the PtNPs were partially exposed at the surface. Compared with a Pt film electrode, some Pt-C films exhibited higher electrode activity against geosmin although the surface Pt concentrations of these Pt-C films were much lower than that of the Pt film electrode, thanks to the wider potential window and lower background current that resulted from the ultraflat and stable carbon-based film prepared by UBM co-sputtering. Computational experiments revealed that the theoretical oxidation potential (Eox) value for geosmin was relatively similar to that obtained in electrochemical experiments using our Pt-C film electrode. Moreover, we also theoretically estimated the possible oxidation site of geosmin molecules and the advantage of the NP shape of the electroactive Pt parts as regards the electrochemical oxidation of geosmin. We successfully used the Pt-C film (10.6 at%) electrode to detect geosmin in combination with HPLC at a low detection limit of 100 ng L-1.
- Subjects :
- Detection limit
Materials science
Nanoparticle
chemistry.chemical_element
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
Electrochemistry
01 natural sciences
Geosmin
0104 chemical sciences
chemistry.chemical_compound
Carbon film
chemistry
Chemical engineering
Cavity magnetron
Electrode
General Materials Science
0210 nano-technology
Carbon
Subjects
Details
- ISSN :
- 20403372 and 20403364
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Nanoscale
- Accession number :
- edsair.doi.dedup.....34694659e3afecc3ebeee0b651987c51
- Full Text :
- https://doi.org/10.1039/c9nr00793h