Back to Search Start Over

Estimates for the first eigenvalue of the drifting Laplacian on embedded hypersurfaces

Authors :
Jing Mao
Ni Xiang
Source :
Hokkaido Math. J. 47, no. 3 (2018), 625-636
Publication Year :
2018
Publisher :
Department of Mathematics, Hokkaido University, 2018.

Abstract

For an $(n-1)$-dimensional compact orientable smooth metric measure space $\big(M,g,e^{-f}dv_{g}\big)$ embedded in an $n$-dimensional compact orientable Riemannian manifold $N$, we successfully give a lower bound for the first nonzero eigenvalue of the drifting Laplacian on $M$, provided the Ricci curvature of $N$ is bounded from below by a positive constant and the weighted function $f$ on $M$ satisfies two constraints.

Details

ISSN :
03854035
Volume :
47
Database :
OpenAIRE
Journal :
Hokkaido Mathematical Journal
Accession number :
edsair.doi.dedup.....34800354802aa8683017381825ddbc4d