Back to Search
Start Over
Estimates for the first eigenvalue of the drifting Laplacian on embedded hypersurfaces
- Source :
- Hokkaido Math. J. 47, no. 3 (2018), 625-636
- Publication Year :
- 2018
- Publisher :
- Department of Mathematics, Hokkaido University, 2018.
-
Abstract
- For an $(n-1)$-dimensional compact orientable smooth metric measure space $\big(M,g,e^{-f}dv_{g}\big)$ embedded in an $n$-dimensional compact orientable Riemannian manifold $N$, we successfully give a lower bound for the first nonzero eigenvalue of the drifting Laplacian on $M$, provided the Ricci curvature of $N$ is bounded from below by a positive constant and the weighted function $f$ on $M$ satisfies two constraints.
- Subjects :
- General Mathematics
eigenvalues
drifting Laplacian
53C42
Riemannian manifold
Space (mathematics)
Measure (mathematics)
Upper and lower bounds
Combinatorics
Ricci curvature
Bounded function
Mathematics::Differential Geometry
Laplace operator
smooth metric measure spaces
Eigenvalues and eigenvectors
35P15
Mathematics
Subjects
Details
- ISSN :
- 03854035
- Volume :
- 47
- Database :
- OpenAIRE
- Journal :
- Hokkaido Mathematical Journal
- Accession number :
- edsair.doi.dedup.....34800354802aa8683017381825ddbc4d