Back to Search
Start Over
Inhibition of Aquaporin-1 and Aquaporin-4 Water Permeability by a Derivative of the Loop Diuretic Bumetanide Acting at an Internal Pore-Occluding Binding Site
Inhibition of Aquaporin-1 and Aquaporin-4 Water Permeability by a Derivative of the Loop Diuretic Bumetanide Acting at an Internal Pore-Occluding Binding Site
- Publication Year :
- 2009
- Publisher :
- American Society for Pharmacology and Experimental Therapeutics, 2009.
-
Abstract
- Aquaporin (AQP) water channels, essential for fluid homeostasis, are expressed in perivascular brain end-feet regions of astroglia (AQP4) and in choroid plexus (AQP1). At a high concentration, the loop diuretic bumetanide has been shown to reduce rat brain edema after ischemic stroke by blocking Na(+)-K(+)-2Cl(-) cotransport. We hypothesized that an additional inhibition of AQP contributes to the protection. We show that osmotic water flux in AQP4-expressing Xenopus laevis oocytes is reduced by extracellular bumetanide (> or =100 microM). The efficacy of block by bumetanide is increased by injection intracellularly. Forty-five synthesized bumetanide derivatives were tested on oocytes expressing human AQP1 and rat AQP4. Of these, one of the most effective was the 4-aminopyridine carboxamide analog, AqB013, which inhibits AQP1 and AQP4 (IC(50) approximately 20 microM, applied extracellularly). The efficacy of block was enhanced by mutagenesis of intracellular AQP4 valine-189 to alanine (V189A, IC(50) approximately 8 microM), confirming the aquaporin as the molecular target of block. In silico docking of AqB013 supported an intracellular candidate binding site in rat AQP4 and suggested that the block involves occlusion of the AQP water pore at the cytoplasmic side. AqB013 at 2 microM had no effect, and 20 microM caused 20% block of human Na(+)-K(+)-2Cl(-) cotransporter activity, in contrast to >90% block of the transporter by bumetanide. AqB013 did not affect X. laevis oocyte Cl(-) currents and did not alter rhythmic electrical conduction in an ex vivo gastric muscle preparation. The identification of AQP-selective pharmacological agents opens opportunities for breakthrough strategies in the treatment of edema and other fluid imbalance disorders.
- Subjects :
- medicine.medical_specialty
Xenopus
Aquaporin
Permeability
Structure-Activity Relationship
Xenopus laevis
Body Water
Sodium Potassium Chloride Symporter Inhibitors
Internal medicine
Extracellular
medicine
Animals
Diuretics
Bumetanide
Pharmacology
Aquaporin 4
Binding Sites
biology
Aquaporin 1
Chemistry
Articles
biology.organism_classification
Rats
Endocrinology
Biophysics
Molecular Medicine
Cotransporter
Intracellular
medicine.drug
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....3495b0a87235f383b83608a67684f623