Back to Search Start Over

Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics

Authors :
Eduard Schreiner
Dingeman L H van der Haven
Pieter J. in 't Veld
Stephan Köhler
Self-Organizing Soft Matter
Source :
Journal of Physical Chemistry B, 125(27), 7485-7498. American Chemical Society
Publication Year :
2021

Abstract

To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self-self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory-Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self-self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.

Details

ISSN :
15205207 and 15206106
Volume :
125
Issue :
27
Database :
OpenAIRE
Journal :
The journal of physical chemistry. B
Accession number :
edsair.doi.dedup.....34aaa9bcc5b311b798f3e1c0a011fc07